Electronic Journal of Statistics

Smoothness of marginal log-linear parameterizations

Robin J. Evans

Full-text: Open access

Abstract

We provide results demonstrating the smoothness of some marginal log-linear parameterizations for distributions on multi-way contingency tables. First we give an analytical relationship between log-linear parameters defined within different margins, and use this to prove that some parameterizations are equivalent to ones already known to be smooth. Second we construct an iterative method for recovering joint probability distributions from marginal log-linear pieces, and prove its correctness in particular cases. Finally we use Markov chain theory to prove that certain cyclic conditional parameterizations are also smooth. These results are applied to show that certain conditional independence models are curved exponential families.

Article information

Source
Electron. J. Statist., Volume 9, Number 1 (2015), 475-491.

Dates
First available in Project Euclid: 24 March 2015

Permanent link to this document
https://projecteuclid.org/euclid.ejs/1427203126

Digital Object Identifier
doi:10.1214/15-EJS1009

Mathematical Reviews number (MathSciNet)
MR3326132

Zentralblatt MATH identifier
1309.62102

Subjects
Primary: 62H17: Contingency tables
Secondary: 62H20: Measures of association (correlation, canonical correlation, etc.)

Keywords
Conditional independence contingency table curved exponential family log-linear parameter marginal parameterization

Citation

Evans, Robin J. Smoothness of marginal log-linear parameterizations. Electron. J. Statist. 9 (2015), no. 1, 475--491. doi:10.1214/15-EJS1009. https://projecteuclid.org/euclid.ejs/1427203126


Export citation

References

  • [1] Bergsma, W., Croon, M. A., and Hagenaars, J. A., Marginal Models: For Dependent, Clustered, and Longitudinal Categorical Data. Springer Science & Business Media, 2009.
  • [2] Bergsma, W. P. and Rudas, T., Marginal models for categorical data., Ann. Stat., 30(1):140–159, 2002.
  • [3] Colombi, R. and Forcina, A., A class of smooth models satisfying marginal and context specific conditional independencies., Journal of Multivariate Analysis, 126:75–85, 2014.
  • [4] Drton, M., Discrete chain graph models., Bernoulli, 15(3):736–753, 2009.
  • [5] Evans, R. J. and Richardson, T. S., Marginal log-linear parameterizations for graphical Markov models., Journal of Royal Statistical Society, Series B, 75:743–768, 2013.
  • [6] Forcina, A., Smoothness of conditional independence models for discrete data., Journal of Multivariate Analysis, 106:49–56, 2012.
  • [7] Forcina, A., Lupparelli, M., and Marchetti, G. M., Marginal parameterizations of discrete models defined by a set of conditional independencies., Journal of Multivariate Analysis, 101 :2519–2527, 2010.
  • [8] Lang, J. B. and Agresti, A., Simultaneously modeling joint and marginal distributions of multivariate categorical responses., Journal of the American Statistical Association, 89(426):625–632, 1994.
  • [9] Lauritzen, S. L., Graphical Models. Clarendon Press, Oxford, UK, 1996.
  • [10] Norris, J. R., Markov Chains. Cambridge University Press, 1997.
  • [11] Rudas, T., Bergsma, W. P., and Németh, R., Marginal log-linear parameterization of conditional independence models., Biometrika, 94 :1006–1012, 2010.