Electronic Journal of Statistics

Exact prior-free probabilistic inference on the heritability coefficient in a linear mixed model

Qianshun Cheng, Xu Gao, and Ryan Martin

Full-text: Open access


Linear mixed-effect models with two variance components are often used when variability comes from two sources. In genetics applications, variation in observed traits can be attributed to biological and environmental effects, and the heritability coefficient is a fundamental quantity that measures the proportion of total variability due to the biological effect. We propose a new inferential model approach which yields exact prior-free probabilistic inference on the heritability coefficient. In particular we construct exact confidence intervals and demonstrate numerically our method’s efficiency compared to that of existing methods.

Article information

Electron. J. Statist., Volume 8, Number 2 (2014), 3062-3076.

First available in Project Euclid: 15 January 2015

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 62F25: Tolerance and confidence regions
Secondary: 62J99: None of the above, but in this section

Differential equation inferential model plausibility unbalanced design variance components


Cheng, Qianshun; Gao, Xu; Martin, Ryan. Exact prior-free probabilistic inference on the heritability coefficient in a linear mixed model. Electron. J. Statist. 8 (2014), no. 2, 3062--3076. doi:10.1214/15-EJS984. https://projecteuclid.org/euclid.ejs/1421330630

Export citation


  • Amos, D. E. and Bulgren, W. G. (1972). Computation of a multivariate $F$ distribution., Math. Comp. 26 255–264.
  • Burch, B. D. and Iyer, H. K. (1997). Exact confidence intervals for a variance ratio (or heritability) in a mixed linear model., Biometrics 53 1318–1333.
  • Cisewski, J. and Hannig, J. (2012). Generalized fiducial inference for normal linear mixed models., Ann. Statist. 40 2102–2127.
  • Das, M. N. and Kulkarni, G. A. (1966). Incomplete block designs for bio-assays., Biometrics 22 706–729.
  • Dempster, A. P. (2008). The Dempster–Shafer calculus for statisticians., Internat. J. Approx. Reason. 48 365–377.
  • E, L., Hannig, J. and Iyer, H. (2008). Fiducial intervals for variance components in an unbalanced two-component normal mixed linear model., J. Amer. Statist. Assoc. 103 854–865.
  • Fenech, A. P. and Harville, D. A. (1991). Exact confidence sets for variance components in unbalanced mixed linear models., Ann. Statist. 19 1771–1785.
  • Fisher, R. A. (1935). The fiducial argument in statistical inference., Ann. Eugenics 6 391–398.
  • Fraser, D. A. S. (1968)., The Structure of Inference. John Wiley & Sons Inc., New York.
  • Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper)., Bayesian Anal. 1 515–533.
  • Gelman, A., Carlin, J. B., Stern, H. S. and Rubin, D. B. (2004)., Bayesian Data Analysis, Second ed. Chapman & Hall/CRC, Boca Raton, FL.
  • Golan, D. and Rosset, S. (2011). Accurate estimation of heritability in genome wide studies using random effects models., Bioinformatics 27 317–323.
  • Graybill, F. A. (1976)., Theory and Application of the Linear Model. Duxbury Press, North Scituate, Mass.
  • Hannig, J. (2009). On generalized fiducial inference., Statist. Sinica 19 491–544.
  • Hannig, J. (2013). Generalized fiducial inference via discretization., Statist. Sinica 23 489–514.
  • Harville, D. A. and Fenech, A. P. (1985). Confidence intervals for variance ratio, or for heritability, in an unbalanced mixed linear model., Biometrics 41 137–152.
  • Kang, H. M., Sul, J. H., Service, S. K., Zaitlen, N. A., Kong, S.-y., Freimer, N. B., Sabatti, C. and Eskin, E. (2010). Variance component model to account for sample structure in genome-wide association studies., Nat. Genet. 42 348–354.
  • Khuri, A. I. and Sahai, H. (1985). Variance components analysis: A selective literature survey., Internat. Statist. Rev. 53 279–300.
  • Lee, Y. and Seely, J. (1996). Computing the Wald interval for a variance ratio., Biometrics 52 1486–1491.
  • Liu, C. and Martin, R. (2015). Frameworks for prior-free posterior probabilistic inference., WIREs Comput. Stat. 7 77–85.
  • Martin, R. (2014). Random sets and exact confidence regions., Sankhyā A 76 288–304.
  • Martin, R. and Liu, C. (2013). Inferential models: A framework for prior-free posterior probabilistic inference., J. Amer. Statist. Assoc. 108 301–313.
  • Martin, R. and Liu, C. (2015a). Conditional inferential models: combining information for prior-free probabilistic inference., J. R. Stat. Soc. Ser. B 77 195–217.
  • Martin, R. and Liu, C. (2015b). Marginal inferential models: Prior-free probabilistic inference on interest parameters., J. Amer. Statist. Assoc., to appear; arXiv:1306.3092.
  • Olsen, A., Seely, J. and Birkes, D. (1976). Invariant quadratic unbiased estimation for two variance components., Ann. Statist. 4 878–890.
  • Polyanin, A. D., Zaitsev, V. F. and Moussiaux, A. (2002)., Handbook of first order partial differential equations. Differential and Integral Equations and Their Applications 1. Taylor & Francis Ltd., London.
  • Searle, S. R., Casella, G. and McCulloch, C. E. (1992)., Variance components. Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics. John Wiley & Sons, Inc., New York A Wiley-Interscience Publication.
  • Shafer, G. (1976)., A Mathematical Theory of Evidence. Princeton University Press, Princeton, N.J.
  • Visscher, P. M., Hill, W. G. and Wray, N. R. (2008). Heritability in the genomics era—concepts and misconceptions., Nat. Rev. Genet. 9 255–266.
  • Wald, A. (1940). A note on the analysis of variance with unequal class frequencies., Ann. Math. Statistics 11 96–100.
  • Wolfinger, R. D. and Kass, R. E. (2000). Nonconjugate Bayesian analysis of variance component models., Biometrics 56 768–774.
  • Xie, M. and Singh, K. (2013). Confidence distribution, the frequentist distribution of a parameter—a review., Int. Statist. Rev. 81 3–39.
  • Yang, J., Benyamin, B., McEvoy, B. P., Gordon, S., Henders, A. K., Nyholt, D. R., Madden, P. A., Heath, A. C., Martin, N. G., Montgomery, G. W., Goddard, M. E. and Visscher, P. M. (2010). Common SNPs explain a large proportion of the heritability for human height., Nat. Genet. 42 565–569.
  • Zhou, X. and Stephens, M. (2014). Efficient multivariate linear mixed model algorithms for genome-wide association studies., Nat. Methods 11 407–409.