Electronic Journal of Statistics

Testing longitudinal data by logarithmic quantiles

Manfred Denker and Lucia Tabacu

Full-text: Open access

Abstract

The shoulder tip pain study of Lumley [13] is re-investigated. It is shown that the new logarithmic quantile estimation (LQE) technique in [9] applies and behaves well under singular covariance structure and small sample sizes as in the shoulder tip pain study. The findings in [6] can be assured under weaker assumptions using a combination of LQE and an ANOVA type statistic.

Article information

Source
Electron. J. Statist., Volume 8, Number 2 (2014), 2937-2952.

Dates
First available in Project Euclid: 12 January 2015

Permanent link to this document
https://projecteuclid.org/euclid.ejs/1421071611

Digital Object Identifier
doi:10.1214/14-EJS965

Mathematical Reviews number (MathSciNet)
MR3299128

Zentralblatt MATH identifier
1309.62080

Subjects
Primary: 62G10: Hypothesis testing 62K15: Factorial designs
Secondary: 62-07: Data analysis

Keywords
Logarithmic quantile estimation nonparametric factorial designs rank tests ANOVA almost sure weak convergence shoulder tip pain study

Citation

Denker, Manfred; Tabacu, Lucia. Testing longitudinal data by logarithmic quantiles. Electron. J. Statist. 8 (2014), no. 2, 2937--2952. doi:10.1214/14-EJS965. https://projecteuclid.org/euclid.ejs/1421071611


Export citation

References

  • [1] Akritas, M. G. and Arnold, S. F. (1994). Fully nonparametric hypotheses for factorial designs I: multivariate repeated measures designs., Journal of the American Statistical Association 89, No. 425 336–343.
  • [2] Akritas, M. G., Arnold, S. F. and Brunner, E. (1997). Nonparametric hypotheses and rank statistics for unbalanced factorial designs., Journal of the American Statistical Association 92, No. 437 258–265.
  • [3] Brunner, E. and Denker, M. (1994). Rank statistics under dependent observations and applications to factorial designs., Journal of Statistical Planning and Inference 42 353–378.
  • [4] Brunner, E. and Puri, M. L. (1996). Nonparametric methods in design and analysis of experiments., Handbook of Statistics Vol. 13, Elsevier Science B. V., Amsterdam 631–703.
  • [5] Brunner, E. and Puri, M. L. (2001). Nonparametric methods in factorial designs., Statistical Papers 42 1–52.
  • [6] Brunner, E., Domhof, S. and Langer, F. (2002)., Nonparametric Analysis of Longitudinal Data in Factorial Experiments. Wiley Series in Probability and Statistics.
  • [7] Brunner, E., Dette, H. and Munk, A. (1997). Box-type approximation in nonparametric factorial designs., Journal of the American Statistical Association 92 1494–1502.
  • [8] Compagnone, D. and Denker, M. (1996). Nonparametric tests for scale and location., J. of Nonparametric Statistics 7 123–154.
  • [9] Denker, M. and Tabacu, L. (2015). Logarithmic quantile estimation for rank statistics., Journal of Statistical Theory and Practice Volume 9, No. 1 146–170.
  • [10] Fridline, M. (2009). Almost sure confidence intervals for the correlation coefficient., Ph.D. thesis. Case Western Reserve University.
  • [11] Lifshits, M. A. (2002). The almost sure limit theorem for sums of random vectors., Journal of Mathematical Sciences 109, No. 6 2166–2178.
  • [12] Lifshits, M. A. (2001). Lecture notes on almost sure limit theorems., Publications IRMA, Lille 54, No. 8 1–23.
  • [13] Lumley, T. (1996). Generalized estimation equations for ordinal data: A note on working correlation structures., Biometrics 52 354–361.
  • [14] Munzel, U. (1999). Linear rank score statistics when ties are present., Statistics and Probability Letters 41 389–395.
  • [15] Thangavelu, K. (2005). Quantile estimation based on the almost sure central limit theorem., Ph.D. thesis. Göttingen University.