Electronic Journal of Statistics

Simulation extrapolation estimation in parametric models with Laplace measurement error

Hira L. Koul and Weixing Song

Full-text: Open access

Abstract

The normal-error-based simulation extrapolation (N-SIMEX) procedure provides a simulation-based method to remove or reduce the bias in estimators of parameters in measurement error models. This paper shows that the N-SIMEX procedure only works for the normal measurement error and does not work for Laplace measurement error. A new L-SIMEX procedure is particularly designed to remove or reduce the Laplace measurement errors in parametric models. Unlike in the N-SIMEX procedure where the measurement error is removed or reduced by adding independent normal errors controlled by the scale parameter, the proposed procedure removes or reduces the Laplace measurement error by adding a noise variable which is a difference between two independent gamma random variables, and where the noise level is governed by the shape parameter. Heuristic and rigorous arguments are provided to justify the proposed method and a Jackknife-type estimation procedure is provided to estimate the variance of the L-SIMEX estimate. Simulation studies and a real data example are presented to demonstrate the proposed estimation procedure. A finite sample comparison with some revised moment estimators of Hong and Tamer is also included.

Article information

Source
Electron. J. Statist., Volume 8, Number 2 (2014), 1973-1995.

Dates
First available in Project Euclid: 29 October 2014

Permanent link to this document
https://projecteuclid.org/euclid.ejs/1414588184

Digital Object Identifier
doi:10.1214/14-EJS941

Mathematical Reviews number (MathSciNet)
MR3273616

Zentralblatt MATH identifier
1302.62055

Subjects
Primary: 62F10: Point estimation 62F40: Bootstrap, jackknife and other resampling methods
Secondary: 62G09: Resampling methods

Keywords
Measurement error Laplace distribution simulation extrapolation method of moments jackknife

Citation

Koul, Hira L.; Song, Weixing. Simulation extrapolation estimation in parametric models with Laplace measurement error. Electron. J. Statist. 8 (2014), no. 2, 1973--1995. doi:10.1214/14-EJS941. https://projecteuclid.org/euclid.ejs/1414588184


Export citation

References

  • [1] Carroll, R. J. and Hall, P. (1988). Optimal rates of convergence for deconvolving a density., Journal of the American Statistical Association. 83 1184–1186.
  • [2] Carroll, R. J., Küchenhoff, H., Lombard, F., and Stefanski, L. A. (1996). Asymptotics for the SIMEX estimator in nonlinear measurement error models., Journal of the American Statistical Association. 91 242–250.
  • [3] Cook, J. R. and Stefanski, L. A. (1994). Simulation-Extrapolation estimation in parametric measurement error models., Journal of the American Statistical Association. 89 1314–1328.
  • [4] Dwork, C., Mcsherry, F., Nissim, K, and Smith, A. (2006). Calibrating noise to sensitivity in private data analysis., Theory of Cryptography, Lecture Notes in Computer Science. 3876 265–284.
  • [5] Fan, J. (1991a). On the optimal rates of convergence for nonparametric deconvolution problems., Annals of Statistics. 19 1257–1272.
  • [6] Fan, J. (1991b). Asymptotic normality for deconvolving kernel density estimators., Sankhya, Series A. 53 97–110.
  • [7] Fan, J. (1991c). Global behavior of deconvolution kernel estimates., Statistica Sinica. 1 541–551.
  • [8] Furman, E. (2008). On a multimvariate gamma distribution., Statistics and Probability Letters. 78 2353–2360.
  • [9] Holm, H. and Alouini, M. S. (2004). Sum and difference of two squared corrected Nakagami variates in connection with the McKay distribution., IEEE Transactions on Communications. 52 1367–1376.
  • [10] Hong, H. and Tamer, E. (2003). A simple estimator for nonlinear error in variable models., Journal of Econometrics. 117 1–19.
  • [11] Kotz, S., Kozubowski, T., and Podgórski, K. (2001)., The Laplace Distribution and Generalizations. Boston: Birkhäuser.
  • [12] Liu, M. C. and Taylor, R. L (1989). A consistent nonparametric density estimator for the deconvolution problem., Canadian Journal of Statistics. 17 399–410.
  • [13] Mckenzie, H., Jerde, C., Visscher, D., Merrill, E., and Lewis, M. (2009). Inferring linear feature use in the presence of GPS measurement error., Environ. Ecol. Stat. 16 531–546.
  • [14] Mathai, A. M. and Moschopoulos, P. G. (1991). On multivariate Gamma., Journal of Multivariate Analysis. 39 135–153.
  • [15] Mathai, A. M. and Moschopoulos, P. G. (1992). A form of multivariate Gamma distribution., Ann. Inst. Statist. Math. 44 97–106.
  • [16] Purdom, E. and Holmes, S. (2005). Error distribution for gene expression data., Statistical Applications in Genetics and Molecular Biology. 4, Article 16.
  • [17] Rousson, V. and Dodge, Y. (1999). The complication of the fourth central moment., The American Statistician. 53 267–269.
  • [18] Polzehl, J. and Zwanzig, S. (2004). SIMEX and TLS: An equivalence result., Preprint Weiererstrass Insttitute Berlin, ISSN0946-8633. No 999.
  • [19] Stefanski, L. A. and Carroll, R. J. (1990). Deconvoluting kernel density estimators, Statistics. 21 165–184.
  • [20] Stefanski, L. A. and Cook, J. R. (1995). Simulation-Extrapolation: The measurement error jackknife., Journal of the American Statistical Association. 90 1247–1256.
  • [21] Volkmer, H. (2014). A characterization of the normal distribution., To appear.
  • [22] Wang, H., Stefanski, L., and Zhu, Z. (2012). Corrected-loss estimation for quantile regression with covariate measurement errors., Biometrika. 99 405–421.