Electronic Journal of Statistics

Analysis of spike train data: A multivariate mixed effects model for phase and amplitude

Pantelis Z. Hadjipantelis, John A. D. Aston, Hans-Georg Müller, and John Moriarty

Full-text: Open access

Abstract

This discussion of the spike train data applies the approach of Hadjipantelis et al. developed for Linguistic data to jointly model both the phase and amplitude functions via a mixed effects model. The approach shows that care needs to be taken when assessing amplitude and phase functions, particularly if separate analysis is undertaken, as there can be high levels of correlation between the warping and amplitude component functions.

Article information

Source
Electron. J. Statist., Volume 8, Number 2 (2014), 1797-1807.

Dates
First available in Project Euclid: 29 October 2014

Permanent link to this document
https://projecteuclid.org/euclid.ejs/1414588165

Digital Object Identifier
doi:10.1214/14-EJS865E

Mathematical Reviews number (MathSciNet)
MR3273597

Zentralblatt MATH identifier
1305.62015

Keywords
Multivariate mixed model functional mixed effects regression pairwise warping

Citation

Hadjipantelis, Pantelis Z.; Aston, John A. D.; Müller, Hans-Georg; Moriarty, John. Analysis of spike train data: A multivariate mixed effects model for phase and amplitude. Electron. J. Statist. 8 (2014), no. 2, 1797--1807. doi:10.1214/14-EJS865E. https://projecteuclid.org/euclid.ejs/1414588165


Export citation

References

  • [1] Wu, W., Hatsopoulos, N., Srivastava, A., Introduction to neural spike train data for phase-amplitude analysis. Electronic Journal of Statistics. 2014; 8:1759–1768, Special Section on Statistics of Time Warpings and Phase, Variations.
  • [2] Chi, Z., Wu, W., Haga, Z., Hatsopoulos, N.G., Margoliash, D., Template-based spike pattern identification with linear convolution and dynamic time warping. Journal of Neurophysiology. 2007;, 97(2):1221–1235.
  • [3] Kneip, A., Ramsay, J.O., Combining registration and fitting for functional models. Journal of the American Statistical Association. 2008;, 103(483):1155–1165.
  • [4] Hadjipantelis, P.Z., Aston, J.A.D., Evans, J.P., Müller, H.G., Unifying amplitude and phase analysis: A compositional data approach to functional multivariate mixed-effects modeling of Mandarin Chinese; 2013., arXiv:1308.0868.
  • [5] Huang, Y., Erdogmus, D., Pavel, M., Mathan, S., Mixed effects models for EEG evoked response detection. In: Machine Learning for Signal Processing, 2008. MLSP 2008. IEEE Workshop on; 2008. pp., 91–96.
  • [6] Davidson, D.J., Functional mixed-effect models for electrophysiological responses. Neurophysiology. 2009;, 41(1):71–79.
  • [7] Wang, X.F., Yang, Q., Fan, Z., Sun, C.K., Yue, G.H., Assessing time-dependent association between scalp EEG and muscle activation: A functional random-effects model approach. Journal of Neuroscience Methods. 2009;, 177(1):232–240.
  • [8] Lopez-Duran, N.L., Nusslock, R., George, C., Kovacs, M., Frontal EEG asymmetry moderates the effects of stressful life events on internalizing symptoms in children at familial risk for depression. Psychophysiology. 2012;, 49(4):510–21.
  • [9] Tang, P., Müller, H.G., Pairwise curve synchronization for high-dimensional data. Biometrika. 2008;, 95:875–889.
  • [10] Bruns, A., Fourier-, Hilbert- and wavelet-based signal analysis: Are they really different approaches? Journal of Neuroscience Methods. 2004;, 137(2):321–332.
  • [11] Ramsay, J.O., Silverman, B.W., Functional Data Analysis. Springer Verlag, New York; 1997. Chapt. 1 &, 6.
  • [12] Kurtek, S., Srivastava, A., Klassen, E., Ding, Z., Statistical modeling of curves using shapes and related features. Journal of the American Statistical Association. 2012;, 107(499):1152–1165.
  • [13] Zhang, Z., Müller, H.G., Functional density synchronization. Computational Statistics and Data Analysis. 2011 Jul;, 55(7):2234–2249.
  • [14] Minka, T.P., Automatic choice of dimensionality for PCA. Advances in Neural Information Processing Systems. 2001;, 15:598–604.
  • [15] Cangelosi, R., Goriely, A., Component retention in principal component analysis with application to cDNA microarray data. Biology Direct. 2007;, 2:2+.

See also

  • Related item: Wu, W., Hatsopoulos, N. G. and Srivastava, A. (2014). Introduction to neural spike train data for phase-amplitude analysis. Electron. J. Statist. 8 1759–1768.