Electronic Journal of Statistics

A vector of Dirichlet processes

Fabrizio Leisen, Antonio Lijoi, and Dario Spanó

Full-text: Open access


Random probability vectors are of great interest especially in view of their application to statistical inference. Indeed, they can be used for identifying the de Finetti mixing measure in the representation of the law of a partially exchangeable array of random elements taking values in a separable and complete metric space. In this paper we describe the construction of a vector of Dirichlet processes based on the normalization of an exchangeable vector of completely random measures that are jointly infinitely divisible. After deducing the form of the multivariate Laplace exponent associated to the vector of the gamma completely random measures, we analyze some of their distributional properties. Our attention particularly focuses on the dependence structure and the specific partition probability function induced by the proposed vector.

Article information

Electron. J. Statist., Volume 7 (2013), 62-90.

First available in Project Euclid: 11 January 2013

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Bayesian nonparametrics completely random measure Dirichlet process Lévy copula multivariate Lévy measure partial exchangeability partition probability function


Leisen, Fabrizio; Lijoi, Antonio; Spanó, Dario. A vector of Dirichlet processes. Electron. J. Statist. 7 (2013), 62--90. doi:10.1214/12-EJS764. https://projecteuclid.org/euclid.ejs/1357913282

Export citation


  • [1] Constantines, G.M. and Savits, T.H. (1996). A multivariate version of the Faa di Bruno formula., Trans. Amer. Math. Soc. 348, 503–520.
  • [2] Cifarelli, D.M. and Regazzini, E. (1978). Problemi statistici non parametrici in condizioni di scambiabilità parziale., Quaderni Istituto Matematica Finanziaria, Università di Torino Serie III. English translation available at: http://www.unibocconi.it/wps/allegatiCTP/CR-Scamb-parz[1].20080528.135739.pdf
  • [3] Cont, R. and Tankov, P. (2004)., Financial modelling with jump processes. Chapman & Hall/CRC, Boca Raton, FL.
  • [4] Daley, D.J. and Vere-Jones, D. (2003)., An introduction to the theory of point processes. Vol. 1. Springer, New York.
  • [5] de Finetti, B. (1938). Sur la condition de “équivalence partielle”. In, Actualités Scientifique et Industrielle 739, 5–18. Hermann, Paris.
  • [6] De Iorio, M., Müller, P., Rosner, G.L. and MacEachern, S.N. (2004). An ANOVA model for dependent random measures., J. Amer. Statist. Assoc. 99, 205–215.
  • [7] Dunson, D.B., Xue, Y. and Carin, L. (2008). The matrix stick-breaking process: flexible Bayes meta-analysis., J. Amer. Statist. Assoc. 103, 317–327.
  • [8] Dunson, D.B. and Park, J.-H. (2008). Kernel stick-breaking processes, Biometrika 95, 307–323.
  • [9] Epifani, I. and Lijoi, A. (2010). Nonparametric priors for vectors of survival functions., Statistica Sinica 20, 1455–1484.
  • [10] Favaro, S., Lijoi, A. and Prünster, I. (2012). Conditional formulae for Gibbs–type exchangeable random partitions., Ann. Appl. Probab., to appear.
  • [11] Favaro, S., Lijoi, A. and Prünster, I. (2012). A new estimator of the discovery probability., Biometrics 68, 1188–1196.
  • [12] Griffin, J.E. and Steel, M.F.J. (2006). Order-based dependent Dirichlet processes., J. Amer. Statist. Assoc. 101, 179–194.
  • [13] Hjort, N.L., Holmes, C.C., Müller, P. and Walker, S.G. (Eds.) (2010)., Bayesian Nonparametrics. Cambridge University Press.
  • [14] James, L.F., Lijoi, A. and Prünster, I. (2009). Posterior analysis for normalized random measures with independent increments., Scand. J. Statist. 36, 76–97.
  • [15] Jara, A., Hanson, T., Quintana, F.A., Müller, P. and Rosner, G. (2011). DPpackage: Bayesian non- and semi-parametric modelling in R., J. Stat. Soft. 40, 1–30.
  • [16] Kingman, J.F.C. (1975). Random discrete distributions (with discussion)., J. Roy. Statist. Soc. Ser. B 37, 1–22.
  • [17] Leisen, F. and Lijoi, A. (2011). Vectors of Poisson-Dirichlet processes., J. Multivariate Anal. 102, 482–495.
  • [18] Lijoi, A., Mena, R.H. and Prünster I. (2007). Bayesian nonparametric estimation of the probability of discovering new species., Biometrika 94, 769–786.
  • [19] Lijoi, A., Nipoti, B. and Prünster, I. (2011). Bayesian inference with dependent normalized completely random measures., Carlo Alberto Notebooks 224.
  • [20] Lijoi, A. and Prünster, I. (2010). Beyond the Dirichlet process., Bayesian Nonparametrics (Holmes, C.C., Hjort, N.L., Müller, P. and Walker, S.G., Eds.), 80–136, Cambridge University Press, Cambridge.
  • [21] Lo, A.Y. (1984). On a class of Bayesian nonparametric estimates. I. Density estimates., Ann. Statist. 12, 351–357.
  • [22] MacEachern, S.N. (1999). Dependent nonparametric processes. In, ASA Proceedings of the Section on Bayesian Statistical Science, Alexandria, VA: American Statistical Association.
  • [23] MacEachern, S.N. (2000). Dependent Dirichlet processes., Technical Report, Ohio State University.
  • [24] Müller, P., Quintana, F. and Rosner, G. (2004). A method for combining inference across related nonparametric Bayesian models., J. R. Stat. Soc. Ser. B 66, 735–749.
  • [25] Nelsen, R.B. (2006)., An introduction to copulas. Springer, New York.
  • [26] Rao, V.A. and Teh, Y.W. (2009). Spatial normalized Gamma processes. In, Advances in Neural Information Processing Systems 22.
  • [27] Regazzini, E., Lijoi, A. and Prünster, I. (2003). Distributional results for means of normalized random measures with independent increments., Ann. Statist. 31, 560–585.
  • [28] Rodríguez, A., Dunson, D. and Gelfand, A. (2008). The nested Dirichlet process., J. Amer. Statist. Assoc. 103, 1131–1144.
  • [29] Trippa, L. and Favaro, S. (2012). A class of normalized random measures with an exact predictive sampling scheme., Scand. J. Statist. 39, 440–460.