Electronic Journal of Statistics

The effect of differential recruitment, non-response and non-recruitment on estimators for respondent-driven sampling

Amber Tomas and Krista J. Gile

Full-text: Open access


Respondent-driven sampling is a widely-used network sampling technique, designed to sample from hard-to-reach populations. Estimation from the resulting samples is an area of active research, with software available to compute at least four estimators of a population proportion. Each estimator is claimed to address deficiencies in previous estimators, however those claims are often unsubstantiated. In this study we provide a simulation-based comparison of five existing estimators, focusing on sampling conditions which a recent estimator is designed to address. We find no estimator consistently out-performs all others, and highlight sampling conditions in which each is to be preferred.

Article information

Electron. J. Statist., Volume 5 (2011), 899-934.

First available in Project Euclid: 22 August 2011

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Respondent Driven Sampling non-response


Tomas, Amber; Gile, Krista J. The effect of differential recruitment, non-response and non-recruitment on estimators for respondent-driven sampling. Electron. J. Statist. 5 (2011), 899--934. doi:10.1214/11-EJS630. https://projecteuclid.org/euclid.ejs/1314018119

Export citation


  • [1] Abdul-Quader, A. S., Heckathorn, D. D., McKnight, C., Bramson, H., C. Nemeth, K. G. and Jarlais, D. C. D. (2006). Effectiveness of respondent-driven sampling for recruiting drug users in New York City: Findings from a pilot study., Journal of Urban Health 83 459–476.
  • [2] Bernhardt, A., Heckathorn, D., Milkman, R. and Theodore, N. (2006). Documenting Unregulated Work: A Survey of Workplace Violations in New York City., The Future of Work.
  • [3] Gile, K. J. (2011). Improved Inference for Respondent-Driven Sampling Data with Application to HIV Prevalence Estimation., Journal of the American Statistical Association 106 135–146.
  • [4] Gile, K. J. and Handcock, M. S. (2010). Respondent-Driven Sampling: An Assessment of Current Methodology., Sociological Methodology 40 285–327.
  • [5] Goel, S. and Salganik, M. J. (2009). Respondent-driven sampling as Markov chain Monte Carlo., Statistics in Medicine 28 2202–2229.
  • [6] Handcock, M. S., Gile, K. J. and Neely, W. W. (2009)., RDS: R Functions for Respondent-Driven Sampling Hidden Population Methods Research Group http://hpmrg.org/, Seattle, WA R package version 0.10.
  • [7] Handcock, M. S., Hunter, D. R., Butts, C. T., Goodreau, S. M. and Morris, M. (2003)., statnet: Software Tools for the Statistical Modeling of Network Data Statnet Project http://statnetproject.org/, Seattle, WA R package version 2.0.
  • [8] Handcock, M. S., Hunter, D. R., Butts, C. T., Goodreau, S. M. and Morris, M. (2008)., statnet: Software tools for the representation, visualization, analysis and simulation of social network data. Journal of Statistical Software 24. http://www.jstatsoft.org/v24/i01/.
  • [9] Hansen, M. H. and Hurwitz, W. N. (1943). On the Theory of Sampling from Finite Populations., Annals of Mathematical Statistics 14 333–362.
  • [10] Heckathorn, D. D. (1997). Respondent-Driven Sampling: A New Approach to the Study of Hidden Populations., Social Problems 44 174–199.
  • [11] Heckathorn, D. D. (2007). Extensions of Respondent-Driven Sampling: Analyzing Continuous Variables and Controlling for Differential Recruitment., Sociological Methodology 37 151–207.
  • [12] Heckathorn, D. D. and Jeffri, J. (2001). Finding the beat: using respondent-driven sampling to study jazz musicians., Poetics 28 307–329.
  • [13] Heckathorn, D. D., Broadhead, R. S., Anthony, D. L. and Weakliem, D. L. (1999). Aids and Social Networks: HIV Prevention Through Network Mobilization., Sociological Focus 32 307–329.
  • [14] Horvitz, D. G. and Thompson, D. J. (1952). A generalization of sampling without replacement from a finite universe., Journal of the American Statistical Association 47 663–685.
  • [15] Johnston, L. G., Malekinejad, M., Kendall, C., Iuppa, I. M. and Rutherford, G. W. (2008). Implementation Challenges to Using Respondent-Driven Sampling Methodology for HIV Biological and Behavioral Surveillance: Field Experiences in International Settings., AIDS and Behavior 12 131–141.
  • [16] Kogan, S. M., Wejnert, C., fu Chen, Y., Brody, G. H. and Slater, L. M. (2011). Respondent-driven sampling with hard-to-reach emerging adults: an introduction and case study with rural african americans., Journal of Adolescent Research 26 30–60.
  • [17] Neely, W. W. (2009). Statistical Theory & Respondent-Driven Sampling (under, review).
  • [18] Salganik, M. J. and Heckathorn, D. D. (2004). Sampling and Estimation in Hidden Populations using Respondent-driven Sampling., Sociological Methodology 34 193–239.
  • [19] Volz, E. and Heckathorn, D. D. (2008). Probability Based Estimation Theory for Respondent Driven Sampling., Journal of Official Statistics 24 79–97.
  • [20] Volz, E., Wejnert, C., Degani, I. and Heckathorn, D. D. (2007). Respondent-Driven Sampling Analysis Tool (RDSAT) Version 5.6., www.respondentdrivensampling.org.