## Electronic Journal of Statistics

### Maximum likelihood estimation in the logistic regression model with a cure fraction

#### Abstract

Logistic regression is widely used in medical studies to investigate the relationship between a binary response variable Y and a set of potential predictors X. The binary response may represent, for example, the occurrence of some outcome of interest (Y=1 if the outcome occurred and Y=0 otherwise). In this paper, we consider the problem of estimating the logistic regression model with a cure fraction. A sample of observations is said to contain a cure fraction when a proportion of the study subjects (the so-called cured individuals, as opposed to the susceptibles) cannot experience the outcome of interest. One problem arising then is that it is usually unknown who are the cured and the susceptible subjects, unless the outcome of interest has been observed. In this setting, a logistic regression analysis of the relationship between X and Y among the susceptibles is no more straightforward. We develop a maximum likelihood estimation procedure for this problem, based on the joint modeling of the binary response of interest and the cure status. We investigate the identifiability of the resulting model. Then, we establish the consistency and asymptotic normality of the proposed estimator, and we conduct a simulation study to investigate its finite-sample behavior.

#### Article information

Source
Electron. J. Statist., Volume 5 (2011), 460-483.

Dates
First available in Project Euclid: 23 May 2011

Permanent link to this document
https://projecteuclid.org/euclid.ejs/1306175113

Digital Object Identifier
doi:10.1214/11-EJS616

Mathematical Reviews number (MathSciNet)
MR2802052

Zentralblatt MATH identifier
1274.62480

Subjects
Primary: 62J12: Generalized linear models
Secondary: 62F12: Asymptotic properties of estimators

#### Citation

Diop, Aba; Diop, Aliou; Dupuy, Jean-François. Maximum likelihood estimation in the logistic regression model with a cure fraction. Electron. J. Statist. 5 (2011), 460--483. doi:10.1214/11-EJS616. https://projecteuclid.org/euclid.ejs/1306175113