Electronic Journal of Statistics

Posterior rates of convergence for Dirichlet mixtures of exponential power densities

Catia Scricciolo

Full-text: Open access


A Dirichlet mixture of exponential power distributions, as a prior on densities supported on the real line in the problem of Bayesian density estimation, is a natural generalization of a Dirichlet mixture of normals, which has been shown to possess good frequentist asymptotic properties in terms of posterior consistency and rates of convergence. In this article, we establish upper bounds on the rates of convergence for the posterior distribution of a Dirichlet mixture of exponential power densities, assuming that the true density has the same form as the model. When the kernel is analytic and the mixing distribution has either compact support or sub-exponential tails, a nearly parametric rate, up to a logarithmic factor whose exponent depends on the tail behaviour of the base measure of the Dirichlet process and the exponential decay rate at zero of the prior for the scale parameter, is obtained. The result covers the important special case where the true density is a location mixture of normals and shows that a nearly parametric rate arises also when the prior on the scale contains zero in its support, provided it has a sufficiently fast decay rate at zero. This improves on some recent results on density estimation with Dirichlet mixtures of normals by allowing the inverse-gamma distribution, which is a commonly used prior on the square of the bandwidth. When the kernel is not infinitely differentiable at zero, as the case may be depending on the shape parameter, the posterior distribution is shown to concentrate around the sampling density at a slower rate.

Article information

Electron. J. Statist., Volume 5 (2011), 270-308.

First available in Project Euclid: 28 April 2011

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 62G07: Density estimation 62G20: Asymptotic properties

Bayesian density estimation mixture of exponential power distributions posterior consistency posterior distribution rate of convergence sieve


Scricciolo, Catia. Posterior rates of convergence for Dirichlet mixtures of exponential power densities. Electron. J. Statist. 5 (2011), 270--308. doi:10.1214/11-EJS604. https://projecteuclid.org/euclid.ejs/1303996031

Export citation


  • [1] Barron, A., Schervish, M. J. and Wasserman, L. (1999). The consistency of posterior distributions in nonparametric problems., Ann. Statist. 27 536–561.
  • [2] Box, G. E. P. and Tiao, G. C. (1973)., Bayesian Inference in Statistical Analysis. Addison-Wesley Publishing Company, Reading, Massachussets.
  • [3] Choy, S. T. B. and Smith, A. F. M. (1997). On robust analysis of a normal location parameter., J. Roy. Statist. Soc. Ser. B 59 463–474.
  • [4] de Jonge, R. and van Zanten, J. H. (2010). Adaptive nonparametric Bayesian inference using location-scale mixture priors., Ann. Statist. 38 3300–3320.
  • [5] Ferguson, T. S. (1983). Bayesian density estimation by mixtures of normal distributions. In, Recent Advances in Statistics (M. H. Rizvi, J. S. Rustagi and D. Siegmund, Eds.) 287–302. Academic Press, New York.
  • [6] Ghosal, S. (2001). Convergence rates for density estimation with Bernstein polynomials., Ann. Statist. 29 1264–1280.
  • [7] Ghosal, S., Ghosh, J. K. and Ramamoorthi, R. V. (1999). Posterior consistency of Dirichlet mixtures in density estimation., Ann. Statist. 27 143–158.
  • [8] Ghosal, S. and van der Vaart, A. W. (2001). Entropies and rates of convergence for maximum likelihood and Bayes estimation for mixtures of normal densities., Ann. Statist. 29 1233–1263.
  • [9] Ghosal, S. and van der Vaart, A. (2007). Convergence rates of posterior distributions for noniid observations., Ann. Statist. 35 192–223.
  • [10] Ghosal, S. and van der Vaart, A. (2007). Posterior convergence rates of Dirichlet mixtures at smooth densities., Ann. Statist. 35 697–723.
  • [11] Haas, M., Mittnik, S. and Paolella, M. S. (2006). Modelling and predicting market risk with Laplace-Gaussian mixture distributions., Appl. Finan. Econ. 16 1145–1162.
  • [12] Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995)., Continuous Univariate Distributions. Vol. 2, 2nd ed., John Wiley & Sons, Inc., New York.
  • [13] Jones, P. N. and McLachlan, G. J. (1990). Laplace-normal mixtures fitted to wind shear data., J. Appl. Statist. 17 271–276.
  • [14] Kanji, G. K. (1985). A mixture model for wind shear data., J. Appl. Statist. 12 49–58.
  • [15] Kruijer, W. and van der Vaart, A. (2008). Posterior convergence rates for Dirichlet mixtures of beta densities., J. Statist. Plann. Inference 138 1981–1992.
  • [16] Lijoi, A., Prünster, I. and Walker, S. G. (2005). On consistency of nonparametric normal mixtures for Bayesian density estimation., J. Amer. Statist. Assoc. 100 1292–1296.
  • [17] Lo, A. Y. (1984). On a class of Bayesian nonparametric estimates: I. Density estimates., Ann. Statist. 12 351–357.
  • [18] Lunetta, G. (1963). Di una generalizzazione dello schema della curva normale., Annali della Facoltà di Economia e Commercio di Palermo 17 237–244.
  • [19] Reed, W. J. (2006). The normal-Laplace distribution and its relatives. In, Advances in Distribution Theory, Order Statistics, and Inference (N. Balakrishnan, E. Castillo and J. M. Sarabia, Eds.) 61–74. Birkhäuser Boston.
  • [20] Schwartz, L. (1965). On Bayes procedures., Z. Wahrsch. Verw. Gebiete 4 10–26.
  • [21] Scricciolo, C. (2001). Convergence rates of posterior distributions for Dirichlet mixtures of normal densities., Working Paper 2001.21, Dipartimento di Scienze Statistiche, Università degli Studi di Padova.
  • [22] Scricciolo, C. (2007). On rates of convergence for Bayesian density estimation., Scand. J. Statist. 34 626–642.
  • [23] Shen, X. and Wasserman, L. (2001). Rates of convergence of posterior distributions., Ann. Statist. 29 687–714.
  • [24] Subbotin, M. T. (1923). On the law of frequency of error., Mat. Sb. 31 296–301.
  • [25] Tokdar, S. T. (2006). Posterior consistency of Dirichlet location-scale mixture of normals in density estimation and regression., Sankhyā 68 90–110.
  • [26] Vianelli, S. (1963). La misura della variabilità condizionata in uno schema generale delle curve normali di frequenza., Statistica 23 447–474.
  • [27] Walker, S. (2004). New approaches to Bayesian consistency., Ann. Statist. 32 2028–2043.
  • [28] Walker, S. G. and Gutiérrez-Peña, E. (1999). Robustifying Bayesian procedures (with discussion). In, Bayesian Statistics 6 (J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, Eds.) 685–710. Oxford Univ. Press, New York.
  • [29] Walker, S. G., Lijoi, A. and Prünster, I. (2007). On rates of convergence for posterior distributions in infinite-dimensional models., Ann. Statist. 35 738–746.
  • [30] West, M. (1987). On scale mixtures of normal distributions., Biometrika 74 646–648.
  • [31] Wong, W. H. and Shen, X. (1995). Probability inequalities for likelihood ratios and convergence rates of sieve MLEs., Ann. Statist. 23 339–362.
  • [32] Wu, Y. and Ghosal, S. (2008). Kullback Leibler property of kernel mixture priors in Bayesian density estimation., Electron. J. Statist. 2 298–331.
  • [33] Wu, Y. and Ghosal, S. (2009). Correction to: “Kullback Leibler property of kernel mixture priors in Bayesian density estimation”., Electron. J. Statist. 3 316–317.