Electronic Journal of Statistics

Kernel regression with functional response

Frédéric Ferraty, Ali Laksaci, Amel Tadj, and Philippe Vieu

Full-text: Open access


We consider kernel regression estimate when both the response variable and the explanatory one are functional. The rates of uniform almost complete convergence are stated as function of the small ball probability of the predictor and as function of the entropy of the set on which uniformity is obtained.

Article information

Electron. J. Statist., Volume 5 (2011), 159-171.

First available in Project Euclid: 28 March 2011

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 62G08: Nonparametric regression

Uniform almost complete convergence kernel estimators functional data entropy semi-metric space


Ferraty, Frédéric; Laksaci, Ali; Tadj, Amel; Vieu, Philippe. Kernel regression with functional response. Electron. J. Statist. 5 (2011), 159--171. doi:10.1214/11-EJS600. https://projecteuclid.org/euclid.ejs/1301318250

Export citation


  • [1] Barrientos-Marin, J., Ferraty, F. and Vieu, P. (2010). Locally modelled regression and functional data., J. Nonparametr. Stat., 22 617–632.
  • [2] Bosq, D. (2000)., Linear processs in function spaces. Theory and Application. Lectures Notes in Statistics, Vol 149. Springer-Verlag.
  • [3] Bosq, D. and Delecroix, M. (1985). Nonparametric prediction of a Hilbert-space valued random variable., Stochastic Process. Appl., 19 271–280.
  • [4] Ferraty, F., Laksaci, A., Tadj, A. and Vieu, P. (2010). Rate of uniform consistency for nonparametric estimates with functional variables., J. Statist. Plann. Inference, 140 335–352.
  • [5] Ferraty, F. and Romain, Y. (2011)., The Oxford Handbook of Functional Data Analysis. Oxford University Press.
  • [6] Ferraty, F. and Vieu, P. (2002). The functional nonparametric model and application to spectrometric data., Comput. Statist., 17 545–564.
  • [7] Ferraty, F. and Vieu, P. (2006)., Nonparametric functional data analysis. Theory and Practice. Springer-Verlag.
  • [8] Ferraty, F. and Vieu, P. (2011). Kernel regression estimation for functional data. In, The Oxford Handbook of Functional Data Analysis (Ed. F. Ferraty and Y. Romain). Oxford University Press.
  • [9] He, G., Müller, H.G., Wang, J.L. and Yang, W. (2009). Functional Linear Regression Via Canonical Analysis., Bernoulli, 16 705–729.
  • [10] Hlubinka, D. and Prchal, L. (2007). Changes in atmospheric radiation from the statistical point of view., Comput. Statist. Data Anal., 51(10) 4926–4941.
  • [11] Lecoutre, J.P. (1990). Uniform consistency of a class of regression function estimators for Banach-space valued random variable., Statist. Probab. Lett., 10 145–149.
  • [12] Loève, M. (1963)., Probability Theory, 3rd ed. Van Nostranr Princeton.
  • [13] Müller, H.G., Chiou, J.M. and Leng, X. (2008). Infering gene expression dynamics via functional regression analysis., BMC Bioinformatics, 9, 60.
  • [14] Ramsay, J. O. and Silverman, B. W. (2005)., Functional Data Analysis, 2nd ed. Springer, New-York.