Electronic Journal of Statistics

Bayesian adaptive B-spline estimation in proportional hazards frailty models

Emmanuel Sharef, Robert L. Strawderman, David Ruppert, Mark Cowen, and Lakshmi Halasyamani

Full-text: Open access

Abstract

Frailty models derived from the proportional hazards regression model are frequently used to analyze clustered right-censored survival data. We propose a semiparametric Bayesian methodology for this purpose, modeling both the unknown baseline hazard and density of the random effects using mixtures of B-splines. The posterior distributions for all regression coefficients and spline parameters are obtained using Markov Chain Monte Carlo (MCMC). The methodology permits the use of weighted mixtures of parametric and nonparametric components in modeling the hazard function and frailty distribution; in addition, the spline knots may also be selected adaptively using reversible-jump MCMC. Simulations indicate that the method produces smooth and accurate posterior hazard and frailty density estimates. The Bayesian approach not only produces point estimators that outperform existing approaches in certain circumstances, but also offers a wealth of information about the parameters of interest in the form of MCMC samples from the joint posterior probability distribution. We illustrate the adaptability of the method with data from a study of congestive heart failure.

Article information

Source
Electron. J. Statist., Volume 4 (2010), 606-642.

Dates
First available in Project Euclid: 6 July 2010

Permanent link to this document
https://projecteuclid.org/euclid.ejs/1278439436

Digital Object Identifier
doi:10.1214/10-EJS566

Mathematical Reviews number (MathSciNet)
MR2660535

Zentralblatt MATH identifier
1329.62406

Keywords
Survival analysis knot selection hazard regression frailty distribution random effect density reversible-jump MCMC heart failure re-hospitalization

Citation

Sharef, Emmanuel; Strawderman, Robert L.; Ruppert, David; Cowen, Mark; Halasyamani, Lakshmi. Bayesian adaptive B-spline estimation in proportional hazards frailty models. Electron. J. Statist. 4 (2010), 606--642. doi:10.1214/10-EJS566. https://projecteuclid.org/euclid.ejs/1278439436


Export citation

References

  • Andersen, P. K., Borgan, Ø., Gill, R. D. and Keiding, N. (1993)., Statistical models based on counting processes. Springer Series in Statistics. Springer-Verlag, New York.
  • Aslanidou, H., Dey, D. K. and Sinha, D. (1998). Bayesian Analysis of Multivariate Survival Data Using Monte Carlo Methods., The Canadian Journal of Statistics / La Revue Canadienne de Statistique 26 33–48.
  • Averill, R. F., McCullough, E. C., Hughes, J. S., Goldfield, N. I., Vertrees, J. C. and Fuller, R. L. (2009). Redesigning the Medicare inpatient PPS to reduce payments to hospitals with high readmission rates., Health Care Financ Rev 30 1–15.
  • Barker, P. and Henderson, R. (2005). Small Sample Bias in the Gamma Frailty Model for Univariate Survival., Lifetime Data Analysis 11.
  • Biller, C. (2000). Adaptive Bayesian Regression Splines in Semiparametric Generalized Linear Models., Journal of Computational and Graphical Statistics 9 122–140.
  • Clayton, D. G. (1991). A Monte Carlo Method for Bayesian Inference in Frailty Models., Biometrics 47 467–485.
  • Clayton, D. and Cuzick, J. (1985). Multivariate Generalizations of the Proportional Hazards Model., Journal of the Royal Statistical Society. Series A 148 82–117.
  • Cox, D. R. (1972). Regression models and life-tables., J. Roy. Statist. Soc. Ser. B 34 187–220.
  • Cox, D. R. (1975). Partial Likelihood., Biometrika 62 269–276.
  • Cujec, B., Quan, H., Jin, Y. and Johnson, D. (2005). Association between physician specialty and volumes of treated patients and mortality among patients hospitalized for newly diagnosed heart failure., Am J Med 118 35–44.
  • de Boor, C. (2001)., A Practical Guide to Splines. Applied Mathematical Sciences 27. Springer.
  • Denison, D. G. T., Mallick, B. K. and Smith, A. F. M. (1998). Automatic Bayesian curve fitting., Journal of the Royal Statistical Society: Series B (Statistical Methodology) 60 333–350.
  • DiMatteo, I., Genovese, C. R. and Kass, R. E. (2001). Bayesian curve-fitting with free-knot splines., Biometrika 88 1055–1071.
  • Fisher, L. D., Dixon, D. O., Herson, J., Frankowski, R. F., Hearron, M. S. and Peace, K. E. (1990). Intention to Treat in Clinical Trials. In, Statistical Issues in Drug Research and Development (Karl E. Peace, Editor) 331–350. Marcel Dekker, New York.
  • Gelman, A., Carlin, J. B., Stern, H. S. and Rubin, D. B. (2004)., Bayesian Data Analysis. Chapman and Hall/CRC.
  • Ghidey, W., Lesaffre, E. and Eilers, P. (2004). Smooth Random Effects Distribution in a Linear Mixed Model., Biometrics 60 945–953.
  • Ghosh, J. K., Delampady, M. and Samanta, T. (2006)., An Introduction to Bayesian Analysis: Theory and Methods. Springer-Verlag.
  • Green, P. J. (1995). Reversible Jump Markov Chain Monte Carlo Computation and Bayesian Model Determination., Biometrika 82 711–732.
  • Halasyamani, L. K., Valenstein, P. N., Friedlander, M. P. and Cowen, M. E. (2005). A comparison of two hospitalist models with traditional care in a community teaching hospital., Am J Med 118 536–543.
  • Hjort, N. L. and Glad, I. K. (1995). Nonparametric density estimation with a parametric start., Ann. Statist. 23 882–904.
  • Hjort, N. L. and Jones, M. C. (1996). Locally parametric nonparametric density estimation., Ann. Statist. 24 1619–1647.
  • Ibrahim, J. G., Chen, M.-H. and Sinha, D. (2001)., Bayesian survival analysis. Springer Series in Statistics. Springer-Verlag, New York.
  • Jencks, S. F., Williams, M. V. and Coleman, E. A. (2009). Rehospitalizations among patients in the Medicare fee-for-service program., N Engl J Med 360 1418–1428.
  • Jong, P., Gong, Y., Liu, P. P. et al. (2003). Care and outcomes of patients newly hospitalized for heart failure in the community treated by cardiologists compared with other specialists., Circulation 108 184–191.
  • Keenan, P. S., Normand, S.-L. T., Lin, Z., Drye, E. E., Bhat, K. R., Ross, J. S., Schuur, J. D., Stauffer, B. D., Bernheim, S. M., Epstein, A. J., Wang, Y., Herrin, J., Chen, J., Federer, J. J., Mattera, J. A., Wang, Y. and Krumholz, H. M. (2008). An administrative claims measure suitable for profiling hospital performance on the basis of 30-day all-cause readmission rates among patients with heart failure., Circ Cardiovasc Qual Outcomes 1 29–37.
  • Komárek, A. (2006). Accelerated Failure Time Models for Multivariate Interval-Censored Data with Flexible Distributional Assumptions PhD thesis, Katholieke Universiteit, Leuven.
  • Komárek, A. and Lesaffre, E. (2008). Bayesian Accelerated Failure Time Model with Multivariate Doubly-Interval-Censored Data and Flexible Distributional Assumptions., Journal of the American Statistical Association 103 523–533.
  • Kooperberg, C., Stone, C. J. and Truong, Y. K. (1995). Hazard Regression., Journal of the American Statistical Association 90 78–94.
  • Kosorok, M. R., Lee, B. L. and Fine, J. P. (2004). Robust inference for univariate proportional hazards frailty regression models., Ann. Statist. 32 1448–1491.
  • LeBlanc, M. and Crowley, J. (1999). Adaptive Regression Splines in the Cox Model., Biometrics 55 204–213.
  • Lindstrom, M. J. (2002). Bayesian estimation of free-knot splines using reversible jumps., Computational Statistics & Data Analysis 41 255–269.
  • Mallick, B. K., Denison, D. G. T. and Smith, A. F. M. (1999). Bayesian Survival Analysis Using a MARS Model., Biometrics, 55 1071–1077.
  • Müller, P. and Quintana, F. A. (2004). Nonparametric Bayesian Data Analysis., Statist. Sci. 19 95–110.
  • Naskar, M. (2008). Semiparametric analysis of clustered survival data under nonparametric frailty., Stat Neer 62 155–172.
  • Nielsen, G. G., Sørensen, T. I. A., Gill, R. D. and Andersen, P. K. (1992). A Counting Process Approach to Maximum Likelihood Estimation in Frailty Models., Scandinavian Journal of Statistics 19 25–43.
  • Pan, W. (2001). Using Frailties in the Accelerated Failure Time Model., Lifetime Data Analysis 7 55–64.
  • Robert, C. P. and Casella, G. (2004)., Monte Carlo Statistical Methods. Springer Series in Statistics. Springer, New York.
  • Ross, J. S., Mulvey, G. K., Stauffer, B., Patlolla, V., Bernheim, S. M., Keenan, P. S. and Krumholz, H. M. (2008). Statistical models and patient predictors of readmission for heart failure: a systematic review., Arch Intern Med 168 1371–1386.
  • Ruppert, D., Nettleton, D. and Hwang, J. T. G. (2007). Exploring the Information in p-Values for the Analysis and Planning of Multiple-Test Experiments., Biometrics 63 483–495.
  • Sharef, E. (2008). Nonparametric Frailty Models for Clustered Survival Data PhD thesis, Cornell, University.
  • Sharef, E., Strawderman, R. L., Ruppert, D., Cowen, M. and Halasyamani, L. (2010). Supplement to “Bayesian Adaptive B-spline Estimation in Proportional Hazards Frailty Models.” DOI:, 10.1214/10-EJS566SUPP.
  • Smith, M. and Kohn, R. (1996). Nonparametric regression using Bayesian variable selection., Journal of Econometrics 75 317–343.
  • Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and van der Linde, A. (2002). Bayesian measures of model complexity and fit., J. R. Stat. Soc. Ser. B Stat. Methodol. 64 583–639.
  • Staudenmayer, J., Ruppert, D. and Buonaccorsi, J. P. (2008). Density estimation in the presence of heteroskedastic measurement error., Journal of the American Statistical Association 103 726–736.
  • Therneau, T. M. and Grambsch, P. M. (2000)., Modeling Survival Data: Extending the Cox Model. Springer.
  • Walker, S. G. and Mallick, B. K. (1997). Hierarchical Generalized Linear Models and Frailty Models with Bayesian Nonparametric Mixing., Journal of the Royal Statistical Society. Series B (Methodological) 59 845–860.

Supplemental materials

  • Supplementary Material: Supplementary materials to accompany “Bayesian adaptive B-spline estimation in proportional hazards frailty models” by Sharef, Strawderman, Ruppert, Cowen, and Halasyamani.