Electronic Journal of Statistics

Multiple testing in ordinal data models

Chuanwen Chen, Arthur Cohen, and Harold B. Sackrowitz

Full-text: Open access

Abstract

Consider an R×C contingency table in which the categories are ordered. Multiple testing of the hypotheses that each local odds ratio is one is carried out. The methodology to perform the multiple tests is an extension of the MRDSS method of Chen, Cohen, and Sackrowitz (2009). The MRDSS method extends the MRD method of Cohen, Sackrowitz, and Xu (2009) by adding a screen stage and a sign stage to MRD. The MRDSS method as well as the extension here is admissible and consistent. Both Fisher-type statistics and Chi-square statistics are used. Examples and a simulation study are included.

Article information

Source
Electron. J. Statist., Volume 3 (2009), 912-931.

Dates
First available in Project Euclid: 17 September 2009

Permanent link to this document
https://projecteuclid.org/euclid.ejs/1253195939

Digital Object Identifier
doi:10.1214/09-EJS392

Mathematical Reviews number (MathSciNet)
MR2540846

Zentralblatt MATH identifier
1326.62130

Subjects
Primary: 62H17: Contingency tables
Secondary: 62C15: Admissibility 62F03: Hypothesis testing

Keywords
Admissibility chi-square test consistency contingency table Fisher’s exact test full multinomial model independent Poisson model ordered categories

Citation

Chen, Chuanwen; Cohen, Arthur; Sackrowitz, Harold B. Multiple testing in ordinal data models. Electron. J. Statist. 3 (2009), 912--931. doi:10.1214/09-EJS392. https://projecteuclid.org/euclid.ejs/1253195939


Export citation

References

  • Agresti, A. (1984a)., An Introduction to Categorical Data Analysis. Wiley-Interscience.
  • Agresti, A. (1984b)., Analysis of Ordinal Categorical Data. Wiley-Interscience.
  • Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing., Journal of the Royal Statistical Society, Ser. B 57, 289–289.
  • Chen, C., Cohen, A., and Sackrowitz, H. (2009). Admissible,consistent multiple testing with applications including variable selection., Electronic Journal of Statistics 3, 633–650.
  • Cohen, A. (1987). Optimality properties of some tests for homogeneity in contingency tables., Statistics 18, 591–597.
  • Cohen, A., Kolassa, J., and Sackrowitz, H. (2007). A smooth version of the step-up procedure for multiple tests of hypotheses., Journal of Statistical Planning and Inference 137, 11, 3352–3360.
  • Cohen, A. and Sackrowitz, H. (2000). Testing whether treatment is “better” than control with ordered categorical data: Definition and complete class theorems., Statistics and Decisions 18, 1–25.
  • Cohen, A. and Sackrowitz, H. (2005a). Characterization of Bayes procedures for multiple endpoint problems and inadmissibility of the step-up procedure., The Annals of Statistics 33, 1, 145–158.
  • Cohen, A. and Sackrowitz, H. (2005b). Decision theory results for one-sided multiple comparison procedures., The Annals of Statistics 33, 1, 126–144.
  • Cohen, A. and Sackrowitz, H. (2007). More on the inadmissibility of step-up., Journal of Multivariate Analysis 98, 3, 481–492.
  • Cohen, A. and Sackrowitz, H. (2008). Multiple testing to two-sided alternatives with dependent data., Statistica Sinica 18, 1593–1602.
  • Cohen, A., Sackrowitz, H., and Xu, M. (2009). A new multiple testing method in the dependent case., The Annals of Statistics 37.
  • Dudoit, S., Shaffer, J., and Boldrick, J. (2003). Multiple Hypothesis Testing in Microarray Experiments., Statistical Science 18, 1, 71–103.
  • Dudoit, S. and Van Der Laan, M. (2008)., Multiple Testing Procedures with Applications to Genomics. Springer Verlag.
  • Gabriel, K. R. (1966). Simultanesous test procedures for multiple comparisons on categocal data., Journal of the American Statistical Association 61, 1081–1096.
  • Hirotsu, C. (1978). Multiple comparisons and grouping rows in a two-way contingency table., Rep. Statis, Appl. Res., Union of Japanese Scientists and Engineers 25, 1, 1–12.
  • Hirotsu, C. (1983). Defining the pattern of association in two-way contingency tables., Biometrika 70, 579–589.
  • Hochberg, Y. and Tamhane, A. (1987)., Multiple comparison procedures. John Wiley & Sons.
  • Lehmann, E. and Romano, J. (2005)., Testing Statistical Hypotheses, Third ed. Springer.
  • Matthes, T. and Truax, D. (1967). Tests of composite hypotheses for the multivariate exponential family., The Annals of Mathematical Statistics 38, 681–697.
  • R Development Core Team. (2009)., R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, http://www.R-project.org.
  • Shaffer, J. (1986). Modified sequentially rejective multiple test procedures., Journal of the American Statistical Association 81, 826–831.