Electronic Journal of Statistics

Deconvolution for an atomic distribution

Bert van Es, Shota Gugushvili, and Peter Spreij

Full-text: Open access

Abstract

Let X1,,Xn be i.i.d. observations, where Xi=Yi+σZi and Yi and Zi are independent. Assume that unobservable Y’s are distributed as a random variable UV, where U and V are independent, U has a Bernoulli distribution with probability of zero equal to p and V has a distribution function F with density f. Furthermore, let the random variables Zi have the standard normal distribution and let σ>0. Based on a sample X1,,Xn, we consider the problem of estimation of the density f and the probability p. We propose a kernel type deconvolution estimator for f and derive its asymptotic normality at a fixed point. A consistent estimator for p is given as well. Our results demonstrate that our estimator behaves very much like the kernel type deconvolution estimator in the classical deconvolution problem.

Article information

Source
Electron. J. Statist., Volume 2 (2008), 265-297.

Dates
First available in Project Euclid: 30 April 2008

Permanent link to this document
https://projecteuclid.org/euclid.ejs/1209565146

Digital Object Identifier
doi:10.1214/07-EJS121

Mathematical Reviews number (MathSciNet)
MR2399196

Zentralblatt MATH identifier
1135.62029

Subjects
Primary: 62G07: Density estimation
Secondary: 62G20: Asymptotic properties

Keywords
Asymptotic normality atomic distribution deconvolution kernel density estimator

Citation

van Es, Bert; Gugushvili, Shota; Spreij, Peter. Deconvolution for an atomic distribution. Electron. J. Statist. 2 (2008), 265--297. doi:10.1214/07-EJS121. https://projecteuclid.org/euclid.ejs/1209565146


Export citation

References

  • [1] J. Aitchison. On the distribution of a positive random variable having a discrete probability mass at the origin., J. Amer. Statist. Assoc., 50:901–908, 1955.
  • [2] J.O. Berger., Statistical Decision Theory and Bayesian Analysis. Springer, New York, 2nd edition, 1985.
  • [3] C. Butucea and A. Tsybakov. Sharp optimality for density deconvolution with dominating bias, I., Theor. Probab. Appl., 52:111–128, 2007.
  • [4] C. Butucea and A. Tsybakov. Sharp optimality for density deconvolution with dominating bias, II., Theor. Probab. Appl., 52:336–349, 2007.
  • [5] P. Carr and D.B. Madan. Option valuation using the Fast Fourier Transform., J. Comput. Finance, 2:61–73, 1998.
  • [6] R. Carrol and P. Hall. Optimal rates of convergence for deconvoluting a density., J. Am. Statist. Assoc., 83 :1184–1186, 1988.
  • [7] E. Cator. Deconvolution with arbitrary smooth kernels., Statist. Probab. Lett., 54:205–215, 2001.
  • [8] K.L. Chung., A Course in Probability Theory. Academic Press, New York, 3rd edition, 2003.
  • [9] A. Delaigle. An alternative view of the deconvolution problem. To appear in, Stat. Sinica, 2007.
  • [10] A. Delaigle and I. Gijbels. Bootstrap bandwidth selection in kernel density estimation from a contaminated sample., Ann. Inst. Statist. Math., 56:19–47, 2003.
  • [11] A. Delaigle and I. Gijbels. Comparison of data-driven bandwidth selection procedures in deconvolution kernel density estimation., Comp. Statist. Data Anal., 45:249–267, 2004.
  • [12] A. Delaigle and I. Gijbels. Frequent problems in calculating integrals and optimizing objective functions: a case study in density deconvolution., Stat. Comp., 17:349–355, 2007.
  • [13] A. Delaigle and P. Hall. On optimal kernel choice for deconvolution., Stat. Probab. Lett., 76 :1594–1602, 2006.
  • [14] A. Delaigle, P. Hall and A. Meister. On deconvolution with repeated measurements., Ann. Statist., 36:665–685, 2008.
  • [15] L. Devroye., A Course in Density Estimation. Birkhäuser, Boston, 1987.
  • [16] L. Devroye. A note on consistent deconvolution in density estimation., Canad. J. Statist., 17:235–239, 1989.
  • [17] L. Devroye and L. Györfi., Nonparametric Density Estimation: The L1 View. John Wiley&Sons, New York, 1985.
  • [18] P.J. Diggle and P. Hall. Fourier approach to nonparametric deconvolution of a density estimate., J. R. Statist. Soc. B, 55:523–531, 1993.
  • [19] J. Fan. Asymptotic normality for deconvolution kernel density estimators., Sankhyā Ser., 53:97–110, 1991.
  • [20] J. Fan. Global behaviour of kernel deconvolution estimates., Statist. Sinica, 1:541–551, 1991.
  • [21] J. Fan. On the optimal rates of convergence for nonparametric deconvolution problems., Ann. Statist., 19 :1257–1272, 1991.
  • [22] J. Fan. Deconvolution for supersmooth distributions., Canad. J. Statist., 20:155–169, 1992.
  • [23] J. Fan and Y. Liu. A note on asymptotic normality for deconvolution kernel density estimators., Sankhyā Ser., 59:138–141, 1997.
  • [24] J. Fan and Y.K. Truong. Nonparametric regression with errors in variables., Ann. Statist., 21 :1900–1925, 1993.
  • [25] A. Feuerverger and R.A. Mureika. The empirical characteristic function and its applications., Ann. Statist., 5:88–97, 1977.
  • [26] S. Gugushvili. Decompounding under Gaussian noise. arXiv :0711.0719 [math.ST], 2007.
  • [27] W. Härdle., Smoothing Techniques with Implementation in S. Springer, New York, 1991.
  • [28] S.H. Hesse. Data-driven deconvolution., J. Nonparametr. Statist., 10:343–373, 1999.
  • [29] W. Hoeffding. Probability inequalities for sums of bounded random variables., J. Amer. Statist. Assoc., 58:13–30, 1963.
  • [30] H. Holzmann and L. Boysen. Integrated square error asymptotics for supersmooth deconvolution., Scand. J. Statist., 33:849–860, 2006.
  • [31] B.G. Lindsay., Mixture Models: Theory, Geometry and Applications. IMS, Hayward, 1995.
  • [32] M.C. Liu and R.L. Taylor. A consistent nonparametric density estimator for the deconvolution problem., Canad. J. Statist., 17:427–438, 1989.
  • [33] J.S. Maritz and T. Lwin., Empirical Bayes Methods. Chapman and Hall, London, 2nd edition, 1989.
  • [34] R.C. Merton. Option pricing when underlying stock returns are discontinuous., J. Financ. Econ., 3:125–144, 1976.
  • [35] A. Meister. Density estimation with normal measurement error with unknown variance., Stat. Sinica 16:195–211, 2006.
  • [36] B.L.S. Prakasa Rao., Nonparametric Functional Estimation. Academic Press, Orlando, 1983.
  • [37] K.-I. Sato., Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge, 2004.
  • [38] L.A. Stefanski. Rates of convergence of some estimators in a class of deconvolution problems., Statist. Probab. Lett., 9:229–235, 1990.
  • [39] L.A. Stefanski and R.J. Caroll. Deconvoluting kernel density estimators., Statistics, 21:169–184, 1990.
  • [40] A. Tsybakov., Introduction à l’estimation non-paramétrique. Springer, Berlin, 2004.
  • [41] A.W. van der Vaart., Asymptotic Statistics. Cambridge University Press, Cambridge, 1998.
  • [42] B. van Es and S. Gugushvili. Some thoughts on the asymptotics of the deconvolution kernel density estimator. arXiv :0801.2600 [stat.ME], 2008.
  • [43] B. van Es and S. Gugushvili. Weak convergence of the supremum distance for supersmooth kernel deconvolution. arXiv :0802.2186 [math.ST], 2008.
  • [44] B. van Es, S. Gugushvili, and P. Spreij. A kernel type nonparametric density estimator for decompounding., Bernoulli, 13:672–694, 2007.
  • [45] A.J. van Es and H.-W. Uh. Asymptotic normality of nonparametric kernel type estimators: crossing the Cauchy boundary., J. Nonparametr. Statist., 16:261–277, 2004.
  • [46] A.J. van Es and H.-W. Uh. Asymptotic normality of kernel-type deconvolution estimators., Scand. J. Statist., 32:467–483, 2005.
  • [47] M.P. Wand. Finite sample performance of deconvolving density estimators., Statist. Probab. Lett., 37:131–139, 1998.
  • [48] M.P. Wand and M.C. Jones., Kernel Smoothing. Chapman & Hall, London, 1995.
  • [49] L. Wasserman., All of Nonparametric Statistics. Springer, Berlin, 2007.
  • [50] C.H. Zhang. Fourier methods for estimating mixing densities and distributions., Ann. Statist., 18:806–831, 1990.