Electronic Journal of Probability

The genealogy of Galton-Watson trees

Samuel G.G. Johnston

Full-text: Open access

Abstract

Take a continuous-time Galton-Watson tree and pick $k$ distinct particles uniformly from those alive at a time $T$. What does their genealogical tree look like? The case $k=2$ has been studied by several authors, and the near-critical asymptotics for general $k$ appear in Harris, Johnston and Roberts (2018) [9]. Here we give the full picture.

Article information

Source
Electron. J. Probab., Volume 24 (2019), paper no. 94, 35 pp.

Dates
Received: 5 March 2019
Accepted: 26 August 2019
First available in Project Euclid: 13 September 2019

Permanent link to this document
https://projecteuclid.org/euclid.ejp/1568361635

Digital Object Identifier
doi:10.1214/19-EJP355

Zentralblatt MATH identifier
07107401

Subjects
Primary: 60J80: Branching processes (Galton-Watson, birth-and-death, etc.)
Secondary: 60J27: Continuous-time Markov processes on discrete state spaces 60J85: Applications of branching processes [See also 92Dxx]

Keywords
Galton-Watson trees branching processes spines coalescence Faà di Bruno’s formula

Rights
Creative Commons Attribution 4.0 International License.

Citation

Johnston, Samuel G.G. The genealogy of Galton-Watson trees. Electron. J. Probab. 24 (2019), paper no. 94, 35 pp. doi:10.1214/19-EJP355. https://projecteuclid.org/euclid.ejp/1568361635


Export citation

References

  • [1] Athreya, K. B.: Coalescence in the recent past in rapidly growing populations. Stoch. Proc. Appl. 122, (2012), 3757–3766.
  • [2] Athreya, K. B.: Coalescence in critical and subcritical Galton-Watson branching processes. J. Appl. Prob. 49, (2012), 627–638.
  • [3] Athreya, K. B.: Coalescence in branching processes, in Branching Processes and Their Applications. 219, Lecture Notes in Statistics, Springer, (2016).
  • [4] Athreya, K. B. and Ney, P. E.: Branching Processes, Springer-Verlag, New York, (1972).
  • [5] Bühler, W.: Generations and degree of relationship in supercritical Markov branching processes. Z. Wahrscheinlichkeitstheorie verw. Geb. 18, (1971), 141–152.
  • [6] Durrett, R.: The genealogy of critical branching processes. Stoch. Proc. Appl. 8(1), (1978), 101–116.
  • [7] Grosjean, N. and Huillet, T.: On the genealogy and coalescence times of Bienayme-Galton-Watson branching processes, Stoch. Models 34(1), (2018).
  • [8] Harris, T. E.: The Theory of Branching Processes, Berlin, Springer, (1963).
  • [9] Harris, S. C., Johnston, S. G. G. and Roberts, M.: The coalescent structure of continuous-time Galton-Watson trees, arXiv:1703.00299
  • [10] Johnson, W. P.: The curious history of Faà Di Bruno’s formula. Am. Math. Mon. 109(3), (2002), 217–234.
  • [11] Kallenberg, O.: Foundations of Modern Probability. Springer-Verlag, New York, (1997).
  • [12] Kesten, H. and Stigum, B. P.: A limit theorem for multidimensional Galton-Watson processes. Ann. Math. Statistics 37(5), (1966), 1211–1223.
  • [13] Kingman, J. F. C.: The coalescent. Stoch. Proc. Appl. 13(3), (1982), 235–248.
  • [14] Lambert, A.: Coalescence times for the branching process. Adv. Appl. Prob. 35(4), (2003), 1071–1089.
  • [15] Le, V.: Coalescence times for the Bienaymé-Galton-Watson process. J. Appl. Probab. 51, (2014), 209-218.
  • [16] Mutagh, F.: Counting dendrograms: A survey. Discrete Appl. Math. 7(2), (1984), 191–199.
  • [17] O’Connell, N.: The genealogy of branching processes and the age of our most recent common ancestor. Adv. Appl. Probab. 27(2), (1995), 418–442.
  • [18] Zubkov, A. M.: Limiting distributions of the distance to the closest common ancestor. Theory Prob. Appl. 20(3), (1976), 602–612.