Electronic Journal of Probability

QuickSort: improved right-tail asymptotics for the limiting distribution, and large deviations

James Allen Fill and Wei-Chun Hung

Full-text: Open access

Abstract

We substantially refine asymptotic logarithmic upper bounds produced by Svante Janson (2015) on the right tail of the limiting QuickSort distribution function $F$ and by Fill and Hung (2018) on the right tails of the corresponding density $f$ and of the absolute derivatives of $f$ of each order. For example, we establish an upper bound on $\log [1 - F(x)]$ that matches conjectured asymptotics of Knessl and Szpankowski (1999) through terms of order $(\log x)^{2}$; the corresponding order for the Janson (2015) bound is the lead order, $x \log x$.

Using the refined asymptotic bounds on $F$, we derive right-tail large deviation (LD) results for the distribution of the number of comparisons required by QuickSort that substantially sharpen the two-sided LD results of McDiarmid and Hayward (1996).

Article information

Source
Electron. J. Probab., Volume 24 (2019), paper no. 67, 13 pp.

Dates
Received: 19 January 2019
Accepted: 7 June 2019
First available in Project Euclid: 28 June 2019

Permanent link to this document
https://projecteuclid.org/euclid.ejp/1561687600

Digital Object Identifier
doi:10.1214/19-EJP331

Mathematical Reviews number (MathSciNet)
MR3978217

Subjects
Primary: 68P10: Searching and sorting
Secondary: 60E05: Distributions: general theory 60C05: Combinatorial probability

Keywords
QuickSort asymptotic bounds tails of distributions large deviations moment generating functions Chernoff bounds

Rights
Creative Commons Attribution 4.0 International License.

Citation

Fill, James Allen; Hung, Wei-Chun. QuickSort: improved right-tail asymptotics for the limiting distribution, and large deviations. Electron. J. Probab. 24 (2019), paper no. 67, 13 pp. doi:10.1214/19-EJP331. https://projecteuclid.org/euclid.ejp/1561687600


Export citation

References

  • [1] Robert P. Dobrow and James Allen Fill, Multiway trees of maximum and minimum probability under the random permutation model, Combinatorics, Probability and Computing 5 (1996), no. 4, 351–371.
  • [2] James Allen Fill and Wei-Chun Hung, On the tails of the limiting QuickSort density, Electron. Commun. Probab. 24 (2019), Paper No. 7, 11.
  • [3] James Allen Fill and Wei-Chun Hung, QuickSort: improved right-tail asymptotics for the limiting distribution, and large deviations (extended abstract), 2019 Proceedings of the Sixteenth Workshop on Analytic Algorithmics and Combinatorics (ANALCO), SIAM, Philadelphia, PA, 2019, pp. 87–93.
  • [4] James Allen Fill and Svante Janson, A characterization of the set of fixed points of the Quicksort transformation, Electronic Communications in Probability 5 (2000), 77–84.
  • [5] James Allen Fill and Svante Janson, Smoothness and decay properties of the limiting Quicksort density function, Mathematics and computer science (Versailles, 2000), Trends Math., Birkhäuser, Basel, 2000, pp. 53–64.
  • [6] James Allen Fill and Svante Janson, Quicksort asymptotics, Journal of Algorithms. Cognition, Informatics and Logic 44 (2002), no. 1, 4–28, Analysis of algorithms.
  • [7] Svante Janson, On the tails of the limiting Quicksort distribution, Electron. Commun. Probab. 20 (2015), no. 81, 7.
  • [8] Charles Knessl and Wojciech Szpankowski, Quicksort algorithm again revisited, Discrete Mathematics & Theoretical Computer Science. DMTCS. An Electronic Journal 3 (1999), no. 2, 43–64.
  • [9] C. J. H. McDiarmid and R. B. Hayward, Large deviations for Quicksort, Journal of Algorithms. Cognition, Informatics and Logic 21 (1996), no. 3, 476–507.
  • [10] Colin McDiarmid, On the method of bounded differences, Surveys in combinatorics, 1989 (Norwich, 1989), London Math. Soc. Lecture Note Ser., vol. 141, Cambridge Univ. Press, Cambridge, 1989, pp. 148–188.
  • [11] Mireille Régnier, A limiting distribution for quicksort, RAIRO Inform. Théor. Appl. 23 (1989), no. 3, 335–343.
  • [12] Uwe Rösler, A limit theorem for “Quicksort”, RAIRO Inform. Théor. Appl. 25 (1991), no. 1, 85–100.