Electronic Journal of Probability

Invasion percolation on Galton-Watson trees

Marcus Michelen, Robin Pemantle, and Josh Rosenberg

Full-text: Open access


We consider invasion percolation on Galton-Watson trees. On almost every Galton-Watson tree, the invasion cluster almost surely contains only one infinite path. This means that for almost every Galton-Watson tree, invasion percolation induces a probability measure on infinite paths from the root. We show that under certain conditions of the progeny distribution, this measure is absolutely continuous with respect to the limit uniform measure. This confirms that invasion percolation, an efficient self-tuning algorithm, may be used to sample approximately from the limit uniform distribution. Additionally, we analyze the forward maximal weights along the backbone of the invasion cluster and prove a limit law for the process.

Article information

Electron. J. Probab., Volume 24 (2019), paper no. 31, 35 pp.

Received: 28 March 2018
Accepted: 18 February 2019
First available in Project Euclid: 3 April 2019

Permanent link to this document

Digital Object Identifier

Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]

backbone incipient infinite cluster limit uniform Poisson point process pivot self-organized criticality

Creative Commons Attribution 4.0 International License.


Michelen, Marcus; Pemantle, Robin; Rosenberg, Josh. Invasion percolation on Galton-Watson trees. Electron. J. Probab. 24 (2019), paper no. 31, 35 pp. doi:10.1214/19-EJP281. https://projecteuclid.org/euclid.ejp/1554256913

Export citation


  • [ABF13] L. Addario-Berry and K. Ford. Poisson-Dirichlet branching random walks. Ann. Appl. Prob., 23:283–307, 2013.
  • [AGdHS08] O. Angel, J. Goodman, F. den Hollander, and G. Slade. Invasion percolation on regular trees. Ann. Probab., 36:420–466, 2008.
  • [AGM13] O. Angel, J. Goodman, and M. Merle. Scaling limit of the invasion percolation cluster on a regular tree. Ann. Probab., 41:229–261, 2013.
  • [AN72] K. Athreya and P. Ney. Branching Processes. Springer-Verlag, New York, 1972.
  • [Azu67] Kazuoki Azuma. Weighted sums of certain dependent random variables. Tôhoku Math. J. (2), 19:357–367, 1967.
  • [BD74] N. Bingham and R. Doney. Asymptotic properties of supercritical branching processes I: the Galton-Watson process. Adv. Appl. Prob., 6:711–731, 1974.
  • [Bil99] Patrick Billingsley. Convergence of probability measures. Wiley Series in Probability and Statistics: Probability and Statistics. John Wiley & Sons, Inc., New York, second edition, 1999. A Wiley-Interscience Publication.
  • [DSV09] M. Damron, A. Sapozhnikov, and B. Vágvölgyi. Relations between invasion percolation and critical percolation in two dimensions. Ann. Probab., 37:2297–2331, 2009.
  • [Dub71] Serge Dubuc. Problèmes relatifs à l’itération de fonctions suggérés par les processus en cascade. Ann. Inst. Fourier (Grenoble), 21(1):171–251, 1971.
  • [Dur10] R. Durrett. Probability: Theory and Examples. Duxbury Press, New York, NY, fourth edition, 2010.
  • [FN71] D. H. Fuk and S. V. Nagaev. Probabilistic inequalities for sums of independent random variables. Teor. Verojatnost. i Primenen., 16:660–675, 1971.
  • [Har63] T. Harris. The theory of branching processes. Springer, Berlin, 1963.
  • [HPS99] O. Häggström, Y. Peres, and R. Schonmann. Percolation on transitive graphs as a coalescent process: relentless merging followed by simultaneous uniqueness. In Perplexing problems in probability, volume 44, pages 69–90. Birkhäuser, Boston, 1999.
  • [JS89] M. Jerrum and A. Sinclair. Approximate counting, uniform generation and rapidly mixing markov chains. Inform. and Comput., 82:93–133, 1989.
  • [Kes86] H. Kesten. The incipient infinite cluster in two-dimensional percolation. Prob Theory Rel. Fields, 73:369–394, 1986.
  • [LP17] R. Lyons and Y. Peres. Probability on trees and networks. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 2017.
  • [LPP96] R. Lyons, R. Pemantle, and Y. Peres. Biased random walks on galton-watson trees. Prob. Th. Rel. Fields, 106:249–264, 1996.
  • [Lyo90] R. Lyons. Random walks and percolation on trees. Ann. Probab., 18:931–958, 1990.
  • [MPR18] M. Michelen, R. Pemantle, and J. Rosenberg. Quenched Survival of Bernoulli Percolation on Galton-Watson Trees. 2018. arXiv:1805.03693
  • [RS00] D. Randall and A. Sinclair. Self-testing algorithms for self-avoiding walks. Journal of Mathematical Physics, 41:1570–1584, 2000.
  • [WW83] D. Wilkinson and J. Willemsen. Invasion percolation: a new form of percolation theory. J. Phys., ser. A: Math. Gen., 16:3365–3376, 1983.
  • [Zha95] Y. Zhang. The fractal volume of the two-dimensional invasion percolation cluster. Comm. Math.Phys., 167:237–254, 1995.