Electronic Journal of Probability

Uniqueness for the 3-state antiferromagnetic Potts model on the tree

Andreas Galanis, Leslie Ann Goldberg, and Kuan Yang

Full-text: Open access

Abstract

The antiferromagnetic $q$-state Potts model is perhaps the most canonical model for which the uniqueness threshold on the tree is not yet understood, largely because of the absence of monotonicities. Jonasson established the uniqueness threshold in the zero-temperature case, which corresponds to the $q$-colourings model. In the permissive case (where the temperature is positive), the Potts model has an extra parameter $\beta \in (0,1)$, which makes the task of analysing the uniqueness threshold even harder and much less is known.

In this paper, we focus on the case $q=3$ and give a detailed analysis of the Potts model on the tree by refining Jonasson’s approach. In particular, we establish the uniqueness threshold on the $d$-ary tree for all values of $d\geq 2$. When $d\geq 3$, we show that the 3-state antiferromagnetic Potts model has uniqueness for all $\beta \geq 1-3/(d+1)$. The case $d=2$ is critical since it relates to the 3-colourings model on the binary tree ($\beta =0$), which has non-uniqueness. Nevertheless, we show that the Potts model has uniqueness for all $\beta \in (0,1)$ on the binary tree. Both of these results are tight since it is known that uniqueness does not hold in the complementary regime.

Our proof technique gives for general $q>3$ an analytical condition for proving uniqueness based on the two-step recursion on the tree, which we conjecture to be sufficient to establish the uniqueness threshold for all non-critical cases ($q\neq d+1$).

Article information

Source
Electron. J. Probab., Volume 23 (2018), paper no. 82, 43 pp.

Dates
Received: 27 April 2018
Accepted: 8 August 2018
First available in Project Euclid: 12 September 2018

Permanent link to this document
https://projecteuclid.org/euclid.ejp/1536717741

Digital Object Identifier
doi:10.1214/18-EJP211

Mathematical Reviews number (MathSciNet)
MR3858910

Zentralblatt MATH identifier
1398.05086

Subjects
Primary: 05C99: None of the above, but in this section 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 82B20: Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs

Keywords
uniqueness infinite regular tree antiferromagnetic Potts model

Rights
Creative Commons Attribution 4.0 International License.

Citation

Galanis, Andreas; Goldberg, Leslie Ann; Yang, Kuan. Uniqueness for the 3-state antiferromagnetic Potts model on the tree. Electron. J. Probab. 23 (2018), paper no. 82, 43 pp. doi:10.1214/18-EJP211. https://projecteuclid.org/euclid.ejp/1536717741


Export citation

References

  • [1] A. Blanca, A. Galanis, L. A. Goldberg, D. Štefankovič, E. Vigoda, and K. Yang, Sampling in uniqueness from the Potts and random-cluster models on random regular graphs, arXiv:1804.08111 (2018).
  • [2] G. R. Brightwell and P. Winkler, Random colorings of a Cayley tree, Contemporary combinatorics 10 (2002), 247–276.
  • [3] R. Dobrushin, Prescribing a system of random variables by conditional distributions, Theory of Probability & Its Applications 15 (1970), no. 3, 458–486.
  • [4] C. Efthymiou, A simple algorithm for sampling colorings of ${G}(n,d/n)$ up to the Gibbs uniqueness threshold, SIAM Journal on Computing 45 (2016), no. 6, 2087–2116.
  • [5] C. Efthymiou, T. P. Hayes, D. Štefankovič, and E. Vigoda, Sampling random colorings of sparse random graphs, Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’18, 2018, pp. 1759–1771.
  • [6] S. Friedli and Y. Velenik, Statistical mechanics of lattice systems: A concrete mathematical introduction, Cambridge University Press, 2017.
  • [7] A. Galanis, D. Štefankovič, and E. Vigoda, Inapproximability for antiferromagnetic spin systems in the tree nonuniqueness region, J. ACM 62 (2015), no. 6, 50:1–50:60.
  • [8] A. Galanis, D. Štefankovič, and E. Vigoda, Inapproximability of the partition function for the antiferromagnetic Ising and hard-core models, Combinatorics, Probability and Computing 25 (2016), no. 4, 500–559.
  • [9] D. Gamarnik and D. Katz, Correlation decay and deterministic FPTAS for counting colorings of a graph, Journal of Discrete Algorithms 12 (2012), 29–47.
  • [10] H.-O. Georgii, Gibbs measures and phase transitions, vol. 9, Walter de Gruyter, 2011.
  • [11] J. Jonasson, Uniqueness of uniform random colorings of regular trees, Statistics & Probability Letters 57 (2002), no. 3, 243–248.
  • [12] L. Li, P. Lu, and Y. Yin, Correlation decay up to uniqueness in spin systems, Proceedings of the Twenty-fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’13, 2013, pp. 67–84.
  • [13] P. Lu, K. Yang, C. Zhang, and M. Zhu, An FPTAS for counting proper four-colorings on cubic graphs, Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’17, 2017, pp. 1798–1817.
  • [14] P. Lu and Y. Yin, Improved FPTAS for multi-spin systems, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (Prasad Raghavendra, Sofya Raskhodnikova, Klaus Jansen, and José D. P. Rolim, eds.), 2013, pp. 639–654.
  • [15] F. Martinelli and E. Olivieri, Approach to equilibrium of Glauber dynamics in the one phase region. I. The attractive case, Comm. Math. Phys. 161 (1994), no. 3, 447–486.
  • [16] F. Martinelli and E. Olivieri, Approach to equilibrium of Glauber dynamics in the one phase region. II. The general case, Communications in Mathematical Physics 161 (1994), no. 3, 487–514.
  • [17] E. Mossel and A. Sly, Rapid mixing of Gibbs sampling on graphs that are sparse on average, Random Structures & Algorithms 35 (2009), no. 2, 250–270.
  • [18] F. Peruggi, F. di Liberto, and G. Monroy, The Potts model on Bethe lattices. I. General results, Journal of Physics A: Mathematical and General 16 (1983), no. 4, 811.
  • [19] F. Peruggi, F. di Liberto, and G. Monroy, Critical behaviour in three-state Potts antiferromagnets on a Bethe lattice, Physica A: Statistical Mechanics and its Applications 131 (1985), no. 1, 300–310.
  • [20] F. Peruggi, F. di Liberto, and G. Monroy, Phase diagrams of the $q$-state Potts model on Bethe lattices, Physica A: Statistical Mechanics and its Applications 141 (1987), no. 1, 151–186.
  • [21] U. A. Rozikov, Gibbs measures on Cayley trees, World scientific, 2013.
  • [22] A. Sinclair, P. Srivastava, D. Štefankovič, and Y. Yin, Spatial mixing and the connective constant: optimal bounds, Probability Theory and Related Fields 168 (2017), no. 1, 153–197.
  • [23] A. Sinclair, P. Srivastava, and M. Thurley, Approximation algorithms for two-state anti-ferromagnetic spin systems on bounded degree graphs, Journal of Statistical Physics 155 (2014), no. 4, 666–686.
  • [24] A. Sly and N. Sun, Counting in two-spin models on $d$-regular graphs, Ann. Probab. 42 (2014), no. 6, 2383–2416.
  • [25] L. E. Thomas, Bound on the mass gap for finite volume stochastic Ising models at low temperature, Communications in Mathematical Physics 126 (1989), no. 1, 1–11.
  • [26] D. Weitz, Combinatorial criteria for uniqueness of Gibbs measures, Random Structures & Algorithms 27, no. 4, 445–475.
  • [27] Y. Yin and C. Zhang, Sampling in Potts model on sparse random graphs, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2016, 2016, pp. 47:1–47:22.