Electronic Journal of Probability
- Electron. J. Probab.
- Volume 23 (2018), paper no. 34, 13 pp.
Moment convergence of balanced Pólya processes
Svante Janson and Nicolas Pouyanne
Abstract
It is known that in an irreducible small Pólya urn process, the composition of the urn after suitable normalization converges in distribution to a normal distribution. We show that if the urn also is balanced, this normal convergence holds with convergence of all moments, thus giving asymptotics of (central) moments.
Article information
Source
Electron. J. Probab., Volume 23 (2018), paper no. 34, 13 pp.
Dates
Received: 22 June 2016
Accepted: 30 June 2017
First available in Project Euclid: 28 April 2018
Permanent link to this document
https://projecteuclid.org/euclid.ejp/1524880978
Digital Object Identifier
doi:10.1214/17-EJP80
Zentralblatt MATH identifier
1390.60044
Subjects
Primary: 60C05: Combinatorial probability
Keywords
Pólya urns Pólya processes moment convergence
Rights
Creative Commons Attribution 4.0 International License.
Citation
Janson, Svante; Pouyanne, Nicolas. Moment convergence of balanced Pólya processes. Electron. J. Probab. 23 (2018), paper no. 34, 13 pp. doi:10.1214/17-EJP80. https://projecteuclid.org/euclid.ejp/1524880978