Electronic Journal of Probability

Local limits of Markov branching trees and their volume growth

Camille Pagnard

Full-text: Open access


We are interested in the local limits of families of random trees that satisfy the Markov branching property, which is fulfilled by a wide range of models. Loosely, this property entails that given the sizes of the sub-trees above the root, these sub-trees are independent and their distributions only depend upon their respective sizes. The laws of the elements of a Markov branching family are characterised by a sequence of probability distributions on the sets of integer partitions which describes how the sizes of the sub-trees above the root are distributed.

We prove that under some natural assumption on this sequence of probabilities, when their sizes go to infinity, the trees converge in distribution to an infinite tree which also satisfies the Markov branching property. Furthermore, when this infinite tree has a single path from the root to infinity, we give conditions to ensure its convergence in distribution under appropriate rescaling of its distance and counting measure to a self-similar fragmentation tree with immigration. In particular, this allows us to determine how, in this infinite tree, the “volume” of the ball of radius $R$ centred at the root asymptotically grows with $R$.

Our unified approach will allow us to develop various new applications, in particular to different models of growing trees and cut-trees, and to recover known results. An illustrative example lies in the study of Galton-Watson trees: the distribution of a critical Galton-Watson tree conditioned on its size converges to that of Kesten’s tree when the size grows to infinity. If furthermore, the offspring distribution has finite variance, under adequate rescaling, Kesten’s tree converges to Aldous’ self-similar CRT and the total size of the $R$ first generations asymptotically behaves like $R^2$.

Article information

Electron. J. Probab., Volume 22 (2017), paper no. 95, 53 pp.

Received: 26 August 2016
Accepted: 19 August 2017
First available in Project Euclid: 8 November 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60J80: Branching processes (Galton-Watson, birth-and-death, etc.) 60F17: Functional limit theorems; invariance principles

random trees Markov branching trees local limits scaling limits self-similar fragmentation trees GHP topology Galton-Watson trees

Creative Commons Attribution 4.0 International License.


Pagnard, Camille. Local limits of Markov branching trees and their volume growth. Electron. J. Probab. 22 (2017), paper no. 95, 53 pp. doi:10.1214/17-EJP96. https://projecteuclid.org/euclid.ejp/1510110478

Export citation


  • [1] Romain Abraham and Jean-François Delmas, Local limits of conditioned Galton-Watson trees: the condensation case, Electron. J. Probab 19 (2014), no. 56, 1–29.
  • [2] Romain Abraham and Jean-François Delmas, Local limits of conditioned Galton-Watson trees: the infinite spine case, Electron. J. Probab. 19 (2014), no. 2, 1–19.
  • [3] Romain Abraham, Jean-François Delmas, and Patrick Hoscheit, A note on the Gromov-Hausdorff-Prokhorov distance between (locally) compact metric measure spaces, Electron. J. Probab 18 (2013), no. 14, 1–21.
  • [4] Louigi Addario-Berry, Nicolas Broutin, Christina Goldschmidt, and Grégory Miermont, The scaling limit of the minimum spanning tree of the complete graph, Ann. Probab. (2017), to appear.
  • [5] David Aldous, The continuum random tree. I, Ann. Probab. 19 (1991), no. 1, 1–28.
  • [6] David Aldous, Probability distributions on cladograms, Random discrete structures (Minneapolis, MN, 1993), IMA Vol. Math. Appl., vol. 76, Springer, New York, 1996, pp. 1–18.
  • [7] David Aldous and Jim Pitman, Tree-valued Markov chains derived from Galton-Watson processes, Ann. Inst. Henri Poincaré Probab. Stat. 34 (1998), no. 5, 637–686.
  • [8] Julien Berestycki, Ranked fragmentations, ESAIM Probab. Statist. 6 (2002), 157–175.
  • [9] Jean Bertoin, Self-similar fragmentations, Ann. Inst. Henri Poincaré Probab. Stat. 38 (2002), no. 3, 319–340.
  • [10] Jean Bertoin, The asymptotic behavior of fragmentation processes, J. Eur. Math. Soc. (JEMS) 5 (2003), no. 4, 395–416.
  • [11] Jean Bertoin, Random fragmentation and coagulation processes, Cambridge Studies in Advanced Mathematics, vol. 102, Cambridge University Press, Cambridge, 2006.
  • [12] Jean Bertoin, Fires on trees, Ann. Inst. Henri Poincaré Probab. Stat. 48 (2012), no. 4, 909–921.
  • [13] Jean Bertoin, Sizes of the largest clusters for supercritical percolation on random recursive trees, Random Structures & Algorithms 44 (2014), no. 1, 29–44.
  • [14] Jean Bertoin, The cut-tree of large recursive trees, Ann. Inst. Henri Poincaré Probab. Stat. 51 (2015), no. 2, 478–488.
  • [15] Jean Bertoin and Grégory Miermont, The cut-tree of large Galton-Watson trees and the Brownian CRT, Ann. Appl. Probab. 23 (2013), no. 4, 1469–1493.
  • [16] Patrick Billingsley, Convergence of probability measures, second ed., Wiley Series in Probability and Statistics: Probability and Statistics, John Wiley & Sons, Inc., New York, 1999.
  • [17] Nicolas Broutin, Luc Devroye, Erin McLeish, and Mickael de la Salle, The height of increasing trees, Random Structures & Algorithms 32 (2008), no. 4, 494–518.
  • [18] Nicolas Broutin and Cécile Mailler, And/or trees: A local limit point of view, Random Structures & Algorithms (2017), to appear.
  • [19] Bo Chen, Daniel J Ford, and Matthias Winkel, A new family of Markov branching trees: the alpha-gamma model, Electron. J. Probab. 14 (2009), no. 15, 400–430.
  • [20] Nicolas Curien and Igor Kortchemski, Random non-crossing plane configurations: A conditioned Galton-Watson tree approach, Random Structures & Algorithms 45 (2014), no. 2, 236–260.
  • [21] Daphné Dieuleveut, The vertex-cut-tree of Galton-Watson trees converging to a stable tree, Ann. Appl. Probab. 25 (2015), no. 4, 2215–2262.
  • [22] Thomas Duquesne, Continuum random trees and branching processes with immigration, Stochastic Process. Appl. 119 (2009), no. 1, 99–129.
  • [23] Thomas Duquesne and Jean-François Le Gall, Random trees, Lévy processes and spatial branching processes, Astérisque 281 (2002).
  • [24] Daniel J Ford, Probabilities on cladograms: introduction to the alpha model, arXiv preprint arXiv:math/0511246 (2005).
  • [25] Bénédicte Haas, Loss of mass in deterministic and random fragmentations, Stochastic Process. Appl. 106 (2003), no. 2, 245–277.
  • [26] Bénédicte Haas, Equilibrium for fragmentation with immigration, Ann. Appl. Probab. 15 (2005), no. 3, 1958–1996.
  • [27] Bénédicte Haas, Fragmentation processes with an initial mass converging to infinity, J. Theoret. Probab. 20 (2007), no. 4, 721–758.
  • [28] Bénédicte Haas, Scaling limits of Markov-Branching trees and applications, arXiv preprint arXiv:1605.07873 (2016).
  • [29] Bénédicte Haas and Grégory Miermont, The genealogy of self-similar fragmentations with negative index as a continuum random tree, Electron. J. Probab. 9 (2004), no. 4, 57–97.
  • [30] Bénédicte Haas and Grégory Miermont, Scaling limits of Markov branching trees with applications to Galton-Watson and random unordered trees, Ann. Probab. 40 (2012), no. 6, 2589–2666.
  • [31] Bénédicte Haas, Grégory Miermont, Jim Pitman, and Matthias Winkel, Continuum tree asymptotics of discrete fragmentations and applications to phylogenetic models, Ann. Probab. 36 (2008), no. 5, 1790–1837.
  • [32] Bénédicte Haas and Robin Stephenson, Scaling limits of $k$-ary growing trees, Ann. Inst. Henri Poincaré Probab. Stat. 51 (2015), no. 4, 1314–1341.
  • [33] Svante Janson, Simply generated trees, conditioned Galton-Watson trees, random allocations and condensation, Probab. Surv. 9 (2012), 103–252.
  • [34] Thordur Jonsson and Sigurður Örn Stefánsson, Condensation in nongeneric trees, J. Stat. Phys. 142 (2011), no. 2, 277–313.
  • [35] Olav Kallenberg, Random measures, fourth ed., Akademie-Verlag, Berlin; Academic Press, Inc., London, 1986.
  • [36] Douglas P Kennedy, The Galton-Watson process conditioned on the total progeny, J. Appl. Probability 12 (1975), no. 4, 800–806.
  • [37] Harry Kesten, Subdiffusive behavior of random walk on a random cluster, Ann. Inst. Henri Poincaré Probab. Stat. 22 (1986), no. 4, 425–487.
  • [38] J. F. C. Kingman, Poisson processes, Oxford Studies in Probability, vol. 3, The Clarendon Press, Oxford University Press, New York, 1993, Oxford Science Publications.
  • [39] Igor Kortchemski, Invariance principles for Galton-Watson trees conditioned on the number of leaves, Stochastic Process. Appl. 122 (2012), no. 9, 3126–3172.
  • [40] Amaury Lambert, Probabilistic Models for the (sub)Tree(s) of Life, Braz. J. Probab. Stat. 31 (2017), no. 3, 415–475.
  • [41] Jean-François Le Gall, Random real trees, Ann. Fac. Sci. Toulouse Math. (6) 15 (2006), no. 1, 35–62.
  • [42] Philippe Marchal, A note on the fragmentation of a stable tree, Fifth Colloquium on Mathematics and Computer Science, Discrete Math. Theor. Comput. Sci. Proc., AI, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2008, pp. 489–499.
  • [43] Grégory Miermont, Self-similar fragmentations derived from the stable tree. I. Splitting at heights, Probab. Theory Related Fields 127 (2003), no. 3, 423–454.
  • [44] J. Pitman, Combinatorial stochastic processes, Lecture Notes in Mathematics, vol. 1875, Springer-Verlag, Berlin, 2006, Lectures from the 32nd Summer School on Probability Theory held in Saint-Flour, July 7–24, 2002.
  • [45] Jean-Luc Rémy, Un procédé itératif de dénombrement d’arbres binaires et son application à leur génération aléatoire, RAIRO Inform. Théor. 19 (1985), no. 2, 179–195.
  • [46] Douglas Rizzolo, Scaling limits of Markov branching trees and Galton-Watson trees conditioned on the number of vertices with out-degree in a given set, Ann. Inst. Henri Poincaré Probab. Stat. 51 (2015), no. 2, 512–532.
  • [47] Sigurður Örn Stefánsson, The infinite volume limit of Ford’s alpha model, Acta Physica Polonica B Proc. Suppl. 2 (2009), no. 3, 555–560.
  • [48] Sigurður Örn Stefánsson, Markov branching in the vertex splitting model, J. Stat. Mech. Theory Exp. 4 (2012), no. 4, P04018.
  • [49] Robin Stephenson, General fragmentation trees, Electron. J. Probab. 18 (2013), no. 101, 1–45.
  • [50] Robin Stephenson, Local convergence of large critical multi-type Galton-Watson trees and applications to random maps, J. Theoret. Probab. (2017), to appear.