Electronic Journal of Probability

Tracy-Widom limit of $q$-Hahn TASEP

Bálint Vető

Full-text: Open access


We consider the $q$-Hahn TASEP which is a three-parameter family of discrete time interacting particle systems. The particles jump to the right independently according to a certain $q$-Binomial distribution with parallel updates. It is a generalization of the totally asymmetric simple exclusion process (TASEP) on $\mathbb{Z}$. For step initial condition, we prove that the current fluctuation of $q$-Hahn TASEP at time $\tau$ is of order $\tau^{1/3}$ and asymptotically distributed as the GUE Tracy–Widom distribution. We verify the KPZ scaling theory conjecture for the $q$-Hahn TASEP.

Article information

Electron. J. Probab., Volume 20 (2015), paper no. 102, 22 pp.

Accepted: 29 September 2015
First available in Project Euclid: 4 June 2016

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]
Secondary: 60B20: Random matrices (probabilistic aspects; for algebraic aspects see 15B52)

interacting particle systems KPZ universality class q-Hahn TASEP current fluctuation Tracy–Widom distribution

This work is licensed under aCreative Commons Attribution 3.0 License.


Vető, Bálint. Tracy-Widom limit of $q$-Hahn TASEP. Electron. J. Probab. 20 (2015), paper no. 102, 22 pp. doi:10.1214/EJP.v20-4241. https://projecteuclid.org/euclid.ejp/1465067208

Export citation


  • Barraquand, Guillaume. A short proof of a symmetry identity for the $q$-Hahn distribution. Electron. Commun. Probab. 19 (2014), no. 50, 3 pp.
  • Barraquand, Guillaume. A phase transition for $q$-TASEP with a few slower particles. Stochastic Process. Appl. 125 (2015), no. 7, 2674–2699.
  • Barraquand, G., and Corwin, I. (2015). The q-Hahn asymmetric exclusion process. arXiv:1501.03445.
  • Borodin, Alexei; Corwin, Ivan. Discrete time $q$-TASEPs. Int. Math. Res. Not. IN 2015, no. 2, 499–537.
  • Borodin, Alexei; Corwin, Ivan. Macdonald processes. Probab. Theory Related Fields 158 (2014), no. 1-2, 225–400.
  • Borodin, Alexei; Corwin, Ivan; Ferrari, Patrik. Free energy fluctuations for directed polymers in random media in $1+1$ dimension. Comm. Pure Appl. Math. 67 (2014), no. 7, 1129–1214.
  • Borodin, Alexei; Corwin, Ivan; Petrov, Leonid; Sasamoto, Tomohiro. Spectral Theory for Interacting Particle Systems Solvable by Coordinate Bethe Ansatz. Comm. Math. Phys. 339 (2015), no. 3, 1167–1245.
  • Borodin, Alexei; Corwin, Ivan; Sasamoto, Tomohiro. From duality to determinants for $q$-TASEP and ASEP. Ann. Probab. 42 (2014), no. 6, 2314–2382.
  • Borodin, Alexei; Ferrari, Patrik L. Large time asymptotics of growth models on space-like paths. I. PushASEP. Electron. J. Probab. 13 (2008), no. 50, 1380–1418.
  • Borodin, Alexei; Ferrari, Patrik L.; Prähofer, Michael; Sasamoto, Tomohiro. Fluctuation properties of the TASEP with periodic initial configuration. J. Stat. Phys. 129 (2007), no. 5-6, 1055–1080.
  • sc Corwin, I. (2015). The q-Hahn Boson Process and q-Hahn TASEP. Int. Math. Res. Not. IN/~14, 5577–5603.
  • Corwin, Ivan; Ferrari, Patrik L.; Péché, Sandrine. Universality of slow decorrelation in KPZ growth. Ann. Inst. Henri Poincaré Probab. Stat. 48 (2012), no. 1, 134–150.
  • Corwin, Ivan; Petrov, Leonid. The $q$-PushASEP: A New Integrable Model for Traffic in $1+1$ Dimension. J. Stat. Phys. 160 (2015), no. 4, 1005–1026.
  • Evans, M. R.; Majumdar, Satya N.; Zia, R. K. P. Factorized steady states in mass transport models. J. Phys. A 37 (2004), no. 25, L275–L280.
  • Ferrari, Patrik L. From interacting particle systems to random matrices. J. Stat. Mech. Theory Exp. 2010, no. 10, P10016, 15 pp.
  • Ferrari, P. L., and Vetö, B. (2013). Tracy–Widom asymptotics for q-TASEP. To appear in Ann. Inst. H. Poincaré Probab. Statist. arXiv:1310.2515.
  • Imamura, T.; Sasamoto, T. Dynamics of a tagged particle in the asymmetric exclusion process with the step initial condition. J. Stat. Phys. 128 (2007), no. 4, 799–846.
  • Johansson, Kurt. Discrete polynuclear growth and determinantal processes. Comm. Math. Phys. 242 (2003), no. 1-2, 277–329.
  • Povolotsky, A. M. On the integrability of zero-range chipping models with factorized steady states. J. Phys. A 46 (2013), no. 46, 465205, 25 pp.
  • Sasamoto, T. Spatial correlations of the 1D KPZ surface on a flat substrate. J. Phys. A 38 (2005), no. 33, L549–L556.
  • Sasamoto, Tomohiro; Wadati, Miki. Exact results for one-dimensional totally asymmetric diffusion models. J. Phys. A 31 (1998), no. 28, 6057–6071.
  • Enhanced binding in quantum field theory. Edited by Fumio Hiroshima, Itaru Sasaki, Herbert Spohn and Akito Suzuki. COE Lecture Note, 38. Math-for-Industry Lecture Note Series. Kyushu University, Faculty of Mathematics, Fukuoka, 2012. ii+207 pp.
  • Tracy, Craig A.; Widom, Harold. Level-spacing distributions and the Airy kernel. Comm. Math. Phys. 159 (1994), no. 1, 151–174.