Electronic Journal of Probability

Spatial evolutionary games with small selection coefficients

Rick Durrett

Full-text: Open access

Abstract

Here we will use results of Cox, Durrett, and Perkins for voter model perturbations to study spatial evolutionary games on $\mathbb{Z}^d$, $d\ge 3$ when the interaction kernel is finite range, symmetric, and has covariance matrix $\sigma^2 I$. The games we consider have payoff matrices of the form $1+ wG$ where $1$ is matrix of all 1's and $w$ is small and positive.  Since our population size $N=\infty$, we call our selection small rather than weak which usually means $w =O(1/N)$. The key to studying these games is the fact that when the dynamics are suitably rescaled in space and time they convergence to solutions of a reaction diffusion equation (RDE). Inspired by work of Ohtsuki and Nowak and Tarnita et al  we show that the reaction term is the replicator equation for a modified game matrix and the modifications of the game matrix depend on the interaction kernel only through the values of two or three simple probabilities for an associated coalescing random walk. Two strategy games lead to an RDE with a cubic nonlinearity, so we can describe the phase diagram completely. Three strategy games lead to a pair of coupled RDE, but using an idea from our earlier work, we are able to show that if there is a repelling function for the replicator equation for the modified game, then there is coexistence in the spatial game when selection is small. This enables us to prove coexistence in the spatial model in a wide variety of examples where the replicator equation of the odified game has an attracting equilibrium with all components positive. Using this result we are able to analyze the behavior of four evolutionary games that have recently been used in cancer modeling.

Article information

Source
Electron. J. Probab., Volume 19 (2014), paper no. 121, 64 pp.

Dates
Accepted: 28 December 2014
First available in Project Euclid: 4 June 2016

Permanent link to this document
https://projecteuclid.org/euclid.ejp/1465065763

Digital Object Identifier
doi:10.1214/EJP.v19-3621

Mathematical Reviews number (MathSciNet)
MR3296537

Zentralblatt MATH identifier
06394977

Subjects
Primary: 60K35 91A22

Keywords
replicator equation spatial model cancer model

Rights
This work is licensed under a Creative Commons Attribution 3.0 License.

Citation

Durrett, Rick. Spatial evolutionary games with small selection coefficients. Electron. J. Probab. 19 (2014), paper no. 121, 64 pp. doi:10.1214/EJP.v19-3621. https://projecteuclid.org/euclid.ejp/1465065763


Export citation

References

  • von Neumann, John; Morgenstern, Oskar. Theory of Games and Economic Behavior. Princeton University Press, Princeton, New Jersey, 1944. xviii+625 pp.
  • Maynard Smith, J., and Price, G.R. (1973) The logic of animal conflict. Nature. 401, 268–371
  • Maynard Smith, J. (1982) Evolution and the Theory of Games. Cambridge U. Press
  • Axelrod, Robert; Hamilton, William D. The evolution of cooperation. Science 211 (1981), no. 4489, 1390–1396.
  • Axelrod, R. (1984) The Evolution of Cooperation. Basic Books, New York
  • Harsanyi, John C.; Selten, Reinhard. A general theory of equilibrium selection in games. With a foreword by Robert Aumann. MIT Press, Cambridge, MA, 1988. xviii+378 pp. ISBN: 0-262-08173-3
  • Hofbauer, Josef; Sigmund, Karl. Evolutionary games and population dynamics. Cambridge University Press, Cambridge, 1998. xxviii+323 pp. ISBN: 0-521-62365-0; 0-521-62570-X
  • Hofbauer, Josef; Sigmund, Karl. Evolutionary game dynamics. Bull. Amer. Math. Soc. (N.S.) 40 (2003), no. 4, 479–519.
  • Nowak, M.A., and Sigmund, K. (2004) Evolutionary dynamics of biological games. Science. 303, 793–799
  • Nowak, Martin A. Evolutionary dynamics. Exploring the equations of life. The Belknap Press of Harvard University Press, Cambridge, MA, 2006. xiv+363 pp. ISBN: 978-0-674-02338-3; 0-674-02338-2
  • Nowak, M.A., and May, R.M. (1992) Evolutionary games and spatial chaos. Nature. 359, 826–829
  • Nowak, Martin A.; May, Robert M. The spatial dilemmas of evolution. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 3 (1993), no. 1, 35–78.
  • Huberman, B., and Glance, N. (1993) Evolutionary games and computer simulation. Proc. Natl. Acad. Sci., IUSA. 90, 7716–7718
  • Nowak, Martin A.; Bonhoeffer, Sebastian; May, Robert M. More spatial games. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 4 (1994), no. 1, 33–56.
  • Nowak, M.A., Bonhoeffer, S., and and May, R.M. (1994) Spatial games and the maintenance of cooperation. Proc. Natl. Acad. Sci. USA. 91, 4877–4881
  • Durrett, R., and Levin, S. (1994) The importance of being discrete (and spatial). Theor. Pop. Biol. 46, 363–394
  • Killingback, T., and Doebli, M. (1996) Spatial evolutionary game theory: Hawks and Doves revisited. Proc. Roy. Soc. London, B. 263, 1135–1144
  • Killingback, T., and Doebli, M. (1998) Self-oraganized criticality in spatial evolutionary game theory. J. Theoretical Biology. 191, 335–340
  • Szabo, G., and Töke, C. (1998) Evolutionary prisoner's dliemma game on a square lattice. Phys. Rev., E. 58, 69–73
  • van Baalen, M., and Rand, D.A. (1998) The unit of selection in viscous populations and the evolution of altruism. J. Theor. Biol. 193, 631-648
  • Hauert, C. (2001) Fundamental clusters in spatial 2 times 2 games. Proc. Roy. Soc. London, B. 268, 761–769
  • Hauert, Ch. Effects of space in $2\times 2$ games. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 12 (2002), no. 7, 1531–1548.
  • Hauert, C., and Doebeli, M. (2004) Spatial structure often inhibits the evolution of cooperation in the snowdrift game. Nature. 428, 643–646
  • Hauert, Christoph; Szabó, György. Game theory and physics. Amer. J. Phys. 73 (2005), no. 5, 405–414.
  • Szabo, G., Vukov, J., and Szolnoki, A. (2005) Phase diagrams for an evolutionary Prisoner's dilemma game on two-deimnsional lattices. Phys. Rev. E. 72, paper 047107
  • Doebeli, M., and Hauert, C. (2005) Models of cooperation based on the Prisoner's Dilemma and the Snowdrift game. Ecology Letters. 8, 748–766
  • Lieberman, E., Hauert, C., and Nowak, M.A. (2005) Evolutionary dyanmics on graphs. Nature. 433, 312–316
  • Ohtsuki, Hisashi; Nowak, Martin A. The replicator equation on graphs. J. Theoret. Biol. 243 (2006), no. 1, 86–97.
  • Ohtsuki, H., Hauert, C., Lieberman, E., and Nowak, M.A. (2006) A simple rule for the evolution of cooperation on graphs and social networks. Nature. 441, 502–505
  • Ohtsuki, Hisashi; Nowak, Martin A. The replicator equation on graphs. J. Theoret. Biol. 243 (2006), no. 1, 86–97.
  • Szabó, György; Fáth, Gábor. Evolutionary games on graphs. Phys. Rep. 446 (2007), no. 4-6, 97–216.
  • Gore, J., Youk, H., and van Oudenaarden, A. (2009) Snowdrift game dynamics and facultative cheating in yeast. Nature. 459, 253–256.
  • Roca, C.P., Cuesta, J.A., and Sanchez, A. (2009) Effect of spatial structure on the evolution of cooperation. Phys. Rev. E. 80, paper 046106
  • Roca, C.P., Cuesta, J.A., and Sanchez, A. (2009) Evolutionary game theory: temporal and spatial effects beyond replicator dynamics. Phys. Life Rev. 6, 208–249
  • Tarnita, Corina E.; Ohtsuki, Hisashi; Antal, Tibor; Fu, Feng; Nowak, Martin A. Strategy selection in structured populations. J. Theoret. Biol. 259 (2009), no. 3, 570–581.
  • Tarnita, C.E., Wage, N., and Nowak, M. (2011) Multiple strategies in structured populations. Proc. Natl. Acad. Sci. 108, 2334–2337
  • Lanchier, N. Stochastic spatial model of producer-consumer systems on the lattice. Adv. in Appl. Probab. 45 (2013), no. 4, 1157–1181.
  • Lanchier, N. Stochastic spatial model of producer-consumer systems on the lattice. Adv. in Appl. Probab. 45 (2013), no. 4, 1157–1181.
  • Axelrod, R., Axelrod, D.E., and Pienta, K.J. (2006) Evolution of cooperation among tumor cells. Proc. Natl. Acad. Sci. 103, 13474–13479
  • Basanta, D., and Deutsch, A. (2008) A game theoretical perspective on the somatic evolution of cancer. Chapter 5 in Selected Topics in Cancer Modeling. edited by N. Bellomo. Spring, New York
  • Basanta, D., Gatenby, R.A., and Anderson, A.R.A. (2012) Exploiting evolution to treat drug resistance: Combination therapy and the double bind. Molecular Pharmaceutics. 9, 914–921
  • Basanta, D.; Hatzikirou, H.; Deutsch, A. Studying the emergence of invasiveness in tumours using game theory. Eur. Phys. J. B 63 (2008), no. 3, 393–397.
  • Basanta, D., Scott, J.G., Rockne, R., Swanson, K.R., and Anderson, A.R.A. (2011) The role of IDH1 mutated tumor cells in secondary glioblastomas: an evolutionary game theoretic view. Physical Biology. 8, paper 015016
  • Basanta, D., Scott, J.G., Fishman, M.N., Ayala, G., Hayward, S.W., and Anderson, A.R.A. (2012) Investigating prostate cancer tumor-stroma interactions: clinical and biological insights from an evolutionary game. British J. Cancer. 106, 174–181
  • Basanta, D., Simon, M., Hatzikirou, H., and Deutsch, A. (2008) Evolutionary game theory elucidates the role of glycolysis in glioma progression and invasion. Cell Proliferation. 41, 980–987
  • Dingli, D., Chalub, F.A.C.C., Santos, F.C., van Segbroeck, S., and Pahceco, J.M. (2009) Cancer phenotype as the outcome of an evolutionary game between normal and malignant cells. British J. Cancer. 101, 1130–1136
  • Swierniak, Andrzej; Krzeslak, Michal. Application of evolutionary games to modeling carcinogenesis. Math. Biosci. Eng. 10 (2013), no. 3, 873–911.
  • Tomlinson, I.P.M. (1997) Game-theory models of interactions between tumor cells. European J. Cancer. 33, 1495–1500
  • Tomlinson, I.P.M., and Bodmer. W.F. (1997) Modelling the consequences of interactions between tumor cells. British J. Cancer. 78, 157–160 mn Other references
  • Aronson, D. G.; Weinberger, H. F. Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation. Partial differential equations and related topics (Program, Tulane Univ., New Orleans, La., 1974), pp. 5–49. Lecture Notes in Math., Vol. 446, Springer, Berlin, 1975.
  • Aronson, D. G.; Weinberger, H. F. Multidimensional nonlinear diffusion arising in population genetics. Adv. in Math. 30 (1978), no. 1, 33–76.
  • Blume, Lawrence E. The statistical mechanics of strategic interaction. Games Econom. Behav. 5 (1993), no. 3, 387–424.
  • Bomze, I.M. (1983) Lotka-Volterra equation and replicator dynamics. Biological Cybernetics. 48, 201–211
  • Bomze, I.M. (1983) Lotka-Volterra equation and replicator dynamics: new issues in the classification. Biological Cybernetics. 72, 447–453
  • Clifford, Peter; Sudbury, Aidan. A model for spatial conflict. Biometrika 60 (1973), 581–588.
  • Cox, J. Theodore; Durrett, Richard; Perkins, Edwin A. Voter model perturbations and reaction diffusion equations. Ast�risque No. 349 (2013), vi+113 pp. ISBN: 978-2-85629-355-3
  • Durrett, R. Predator-prey systems. Asymptotic problems in probability theory: stochastic models and diffusions on fractals (Sanda/Kyoto, 1990), 37–58, Pitman Res. Notes Math. Ser., 283, Longman Sci. Tech., Harlow, 1993.
  • Durrett, Rick. Mutual invadability implies coexistence in spatial models. Mem. Amer. Math. Soc. 156 (2002), no. 740, viii+118 pp.
  • Durrett, Rick. Special invited paper: coexistence in stochastic spatial models. Ann. Appl. Probab. 19 (2009), no. 2, 477–496.
  • Durrett, Rick. Probability: theory and examples. Fourth edition. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 2010. x+428 pp. ISBN: 978-0-521-76539-8
  • Durrett, R., and Levin, S. (1997) Allelopathy in spatially distributed populations. J. Theor. Biol. 185, 165–172
  • Durrett, R.; Neuhauser, C. Particle systems and reaction-diffusion equations. Ann. Probab. 22 (1994), no. 1, 289–333.
  • Durrett, Rick; Swindle, Glen. Coexistence results for catalysts. Probab. Theory Related Fields 98 (1994), no. 4, 489–515.
  • Ellison, Glenn. Learning, local interaction, and coordination. Econometrica 61 (1993), no. 5, 1047–1071.
  • Fife, Paul C.; McLeod, J. B. The approach of solutions of nonlinear diffusion equations to travelling front solutions. Arch. Ration. Mech. Anal. 65 (1977), no. 4, 335–361.
  • Fife, Paul C.; McLeod, J. B. A phase plane discussion of convergence to travelling fronts for nonlinear diffusion. Arch. Rational Mech. Anal. 75 (1980/81), no. 4, 281–314.
  • Goh, B. S. Global stability in two species interactions. J. Math. Biol. 3 (1976), no. 3-4, 313–318.
  • Gore, J., Youk, H., and van Oudenaarden, A. (2009) Snowdrift game dynamics and facultative cheating in yeast. Nature. 459, 253–256
  • Griffeath, David. Additive and cancellative interacting particle systems. Lecture Notes in Mathematics, 724. Springer, Berlin, 1979. iv+108 pp. ISBN: 3-540-09508-X.
  • Harris, T. E. On a class of set-valued Markov processes. Ann. Probability 4 (1976), no. 2, 175–194.
  • Harrison, G.W. (1977) Global stability of food chains. American Naturalist. ?, 455–457
  • Holley, Richard A.; Liggett, Thomas M. Ergodic theorems for weakly interacting infinite systems and the voter model. Ann. Probability 3 (1975), no. 4, 643–663.
  • Kandori, Michihiro; Mailath, George J.; Rob, Rafael. Learning, mutation, and long run equilibria in games. Econometrica 61 (1993), no. 1, 29–56.
  • Licht, A.M. (1999) Games commissions play" 2 times 2 games of international securities regulation. Yale Journal of International Law. 24, 61–128
  • Liggett, Thomas M. Stochastic interacting systems: contact, voter and exclusion processes. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 324. Springer-Verlag, Berlin, 1999. xii+332 pp. ISBN: 3-540-65995-1