Electronic Journal of Probability

Causal interpretation of stochastic differential equations

Niels Hansen and Alexander Sokol

Full-text: Open access


We give a causal interpretation of stochastic differential equations (SDEs) by defining the postintervention SDE resulting from an intervention in an SDE. We show that under Lipschitz conditions, the solution to the postintervention SDE is equal to a uniform limit in probability of postintervention structural equation models based on the Euler scheme of the original SDE, thus relating our definition to mainstream causal concepts. We prove that when the driving noise in the SDE is a Lévy process, the postintervention distribution is identifiable from the generator of the SDE.

Article information

Electron. J. Probab., Volume 19 (2014), paper no. 100, 24 pp.

Accepted: 26 October 2014
First available in Project Euclid: 4 June 2016

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60H10: Stochastic ordinary differential equations [See also 34F05]
Secondary: 62A01: Foundations and philosophical topics

Stochastic diferential equation Causality Structural equation model Identifiability Levy process Weak conditional local independence

This work is licensed under a Creative Commons Attribution 3.0 License.


Hansen, Niels; Sokol, Alexander. Causal interpretation of stochastic differential equations. Electron. J. Probab. 19 (2014), paper no. 100, 24 pp. doi:10.1214/EJP.v19-2891. https://projecteuclid.org/euclid.ejp/1465065742

Export citation


  • Aalen, Odd O.; Røysland, Kjetil; Gran, Jon Michael; Ledergerber, Bruno. Causality, mediation and time: a dynamic viewpoint. J. Roy. Statist. Soc. Ser. A 175 (2012), no. 4, 831–861.
  • D. Anderson and T. G. Kurtz, Continuous time Markov chain models for chemical reaction networks, Design and Analysis of Biomolecular Circuits, Springer, Heidelberg, 2011, pp. 3–42.
  • Applebaum, David. Levy processes and stochastic calculus. Second edition. Cambridge Studies in Advanced Mathematics, 116. Cambridge University Press, Cambridge, 2009. xxx+460 pp. ISBN: 978-0-521-73865-1
  • T. Björk, Arbitrage theory in continuous time, Oxford University Press, 2009.
  • Commenges, Daniel; Gegout-Petit, Anne. A general dynamical statistical model with causal interpretation. J. R. Stat. Soc. Ser. B Stat. Methodol. 71 (2009), no. 3, 719–736.
  • Comte, F.; Renault, E. Noncausality in continuous time models. Econometric Theory 12 (1996), no. 2, 215–256.
  • Dawid, A. P. Causal inference without counterfactuals. With comments and a rejoinder by the author. J. Amer. Statist. Assoc. 95 (2000), no. 450, 407–448.
  • Didelez, Vanessa. Graphical models for marked point processes based on local independence. J. R. Stat. Soc. Ser. B Stat. Methodol. 70 (2008), no. 1, 245–264.
  • Eichler, Michael. Granger causality and path diagrams for multivariate time series. J. Econometrics 137 (2007), no. 2, 334–353.
  • Eichler, Michael. Graphical modelling of multivariate time series. Probab. Theory Related Fields 153 (2012), no. 1-2, 233–268.
  • Eichler, Michael; Didelez, Vanessa. On Granger causality and the effect of interventions in time series. Lifetime Data Anal. 16 (2010), no. 1, 3–32.
  • A. Gofieau et al., Life with 6000 genes, Science 274 (1996), no. 5287, 546–567.
  • T. R. Hughes et al., Functional discovery via a compendium of expression profiles, Cell 102 (2000), 109–126.
  • Ethier, Stewart N.; Kurtz, Thomas G. Markov processes. Characterization and convergence. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons, Inc., New York, 1986. x+534 pp. ISBN: 0-471-08186-8
  • Florens, Jean-Pierre; Fougere, Denis. Noncausality in continuous time. Econometrica 64 (1996), no. 5, 1195–1212.
  • Gegout-Petit, Anne; Commenges, Daniel. A general definition of influence between stochastic processes. Lifetime Data Anal. 16 (2010), no. 1, 33–44.
  • Gill, Jelena B.; Petrović, Ljiljana. Causality and stochastic dynamic systems. SIAM J. Appl. Math. 47 (1987), no. 6, 1361–1366.
  • Grubb, Gerd. Distributions and operators. Graduate Texts in Mathematics, 252. Springer, New York, 2009. xii+461 pp. ISBN: 978-0-387-84894-5
  • P. O. Hoyer, D. Janzing, J. M. Mooij, J. Peters, and B. Schölkopf, Nonlinear causal discovery with additive noise models, Advances in Neural Information Processing Systems 21 (NIPS), MIT Press, 2009, pp. 689–696.
  • M. Jacobsen, A brief account of the theory of homogeneous Gaussian diffusions in finite dimensions, Frontiers in Pure and Applied Probability 1, TVP Science Publishers, 1993, pp. 86–94.
  • Jacod, Jean; Shiryaev, Albert N. Limit theorems for stochastic processes. Second edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 288. Springer-Verlag, Berlin, 2003. xx+661 pp. ISBN: 3-540-43932-3
  • M. H. Maathuis, D. Colombo, M. Kalisch, and P. Bühlmann, phPredicting causal effects in large-scale systems from observational data, Nature Methods (2010), no. 4, 247––248.
  • Maathuis, Marloes H.; Kalisch, Markus; Buhlmann, Peter. Estimating high-dimensional intervention effects from observational data. Ann. Statist. 37 (2009), no. 6A, 3133–3164.
  • R. C. Merton, Lifetime portfolio selection under uncertainty: the continuous-time case, Rev. Econ. Stat. 51 (1969), no. 3, 247–257.
  • J. M. Mooij, D. Janzing, and B. Schölkopf, From ordinary differential equations to structural causal models: the deterministic case, Proceedings of the 29th Annual Conference on Uncertainty in Artificial Intelligence (UAI-13), 2013.
  • Pearl, Judea. Causality. Models, reasoning, and inference. Second edition. Cambridge University Press, Cambridge, 2009. xx+464 pp. ISBN: 978-0-521-89560-6; 0-521-77362-8
  • Peters, J.; Buhlmann, P. Identifiability of Gaussian structural equation models with equal error variances. Biometrika 101 (2014), no. 1, 219–228.
  • Petrović, Ljiljana; Dimitrijević, Sladjana. Invariance of statistical causality under convergence. Statist. Probab. Lett. 81 (2011), no. 9, 1445–1448.
  • Petrović, Ljiljana; Stanojević, Dragana. Statistical causality, extremal measures and weak solutions of stochastic differential equations with driving semimartingales. J. Math. Model. Algorithms 9 (2010), no. 1, 113–128.
  • Protter, Philip E. Stochastic integration and differential equations. Second edition. Version 2.1. Corrected third printing. Stochastic Modelling and Applied Probability, 21. Springer-Verlag, Berlin, 2005. xiv+419 pp. ISBN: 3-540-00313-4
  • Rogers, L. C. G.; Williams, David. Diffusions, Markov processes, and martingales. Vol. 1. Foundations. Reprint of the second (1994) edition. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 2000. xx+386 pp. ISBN: 0-521-77594-9
  • Røysland, Kjetil. A martingale approach to continuous-time marginal structural models. Bernoulli 17 (2011), no. 3, 895–915.
  • Røysland, Kjetil. Counterfactual analyses with graphical models based on local independence. Ann. Statist. 40 (2012), no. 4, 2162–2194.
  • Sato, Ken-iti. Levy processes and infinitely divisible distributions. Translated from the 1990 Japanese original. Revised by the author. Cambridge Studies in Advanced Mathematics, 68. Cambridge University Press, Cambridge, 1999. xii+486 pp. ISBN: 0-521-55302-4
  • Spirtes, Peter; Glymour, Clark; Scheines, Richard. Causation, prediction, and search. Second edition. With additional material by David Heckerman, Christopher Meek, Gregory F. Cooper and Thomas Richardson. Adaptive Computation and Machine Learning. A Bradford Book. MIT Press, Cambridge, MA, 2000. xxii+543 pp. ISBN: 0-262-19440-6
  • T. Verma and J. Pearl, Equivalence and synthesis of causal models, Proceedings of the 6th Annual Conference on Uncertainty in Artificial Intelligence (UAI), Elsevier, 1991, pp. 255–268.
  • Wilkinson, Darren James. Stochastic modelling for systems biology. Chapman & Hall/CRC Mathematical and Computational Biology Series. Chapman & Hall/CRC, Boca Raton, FL, 2006. xxii+254 pp. ISBN: 978-1-58488-540-5; 1-58488-540-8
  • K. Zhang and A. Hyvärinen, On the identifiability of the post-nonlinear causal model, Proceedings of the 25th Annual Conference on Uncertainty in Artificial Intelligence (UAI), Elsevier, 2009, pp. 647–655.