Electronic Journal of Probability

Stochastic domination and comb percolation

Alexander Holroyd and James Martin

Full-text: Open access

Abstract

There exists a Lipschitz embedding of a d-dimensional comb graph (consisting of infinitely many parallel copies of $\mathbb{Z}^{d-1}$ joined by a perpendicular copy) into the open set of site percolation on $\mathbb{Z}^d$, whenever the parameter p is close enough to 1 or the Lipschitz constant is sufficiently large. This is proved using several new results and techniques involving stochastic domination, in contexts that include a process of independent overlapping intervals on $\mathbb{Z}$, and first-passage percolation on general graphs.

Article information

Source
Electron. J. Probab., Volume 19 (2014), paper no. 5, 16 pp.

Dates
Accepted: 8 January 2014
First available in Project Euclid: 4 June 2016

Permanent link to this document
https://projecteuclid.org/euclid.ejp/1465065647

Digital Object Identifier
doi:10.1214/EJP.v19-2806

Mathematical Reviews number (MathSciNet)
MR3164758

Zentralblatt MATH identifier
1291.60204

Subjects
Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]
Secondary: 82B43: Percolation [See also 60K35]

Keywords
stochastic domination percolation comb graph Lipschitz embedding first-passage percolation

Rights
This work is licensed under a Creative Commons Attribution 3.0 License.

Citation

Holroyd, Alexander; Martin, James. Stochastic domination and comb percolation. Electron. J. Probab. 19 (2014), paper no. 5, 16 pp. doi:10.1214/EJP.v19-2806. https://projecteuclid.org/euclid.ejp/1465065647


Export citation

References

  • Baccelli, Francois; Foss, Sergey. Poisson hail on a hot ground. J. Appl. Probab. 48A (2011), New frontiers in applied probability: a Festschrift for Soren Asmussen, 343–366. ISBN: 0-902016-08-3
  • R. Basu and A. Sly, Lipschitz embeddings of random sequences, 2012, arXiv:1204.2931.
  • Dirr, N.; Dondl, P. W.; Grimmett, G. R.; Holroyd, A. E.; Scheutzow, M. Lipschitz percolation. Electron. Commun. Probab. 15 (2010), 14–21.
  • Dirr, Nicolas; Dondl, Patrick W.; Scheutzow, Michael. Pinning of interfaces in random media. Interfaces Free Bound. 13 (2011), no. 3, 411–421.
  • Fontes, Luiz; Newman, Charles M. First passage percolation for random colorings of ${\bf Z}^ d$. Ann. Appl. Probab. 3 (1993), no. 3, 746–762.
  • Grimmett, Geoffrey. Percolation. Second edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 321. Springer-Verlag, Berlin, 1999. xiv+444 pp. ISBN: 3-540-64902-6
  • Grimmett, Geoffrey. Three problems for the clairvoyant demon. Probability and mathematical genetics, 380–396, London Math. Soc. Lecture Note Ser., 378, Cambridge Univ. Press, Cambridge, 2010.
  • Grimmett, Geoffrey R.; Holroyd, Alexander E. Plaquettes, spheres, and entanglement. Electron. J. Probab. 15 (2010), 1415–1428.
  • Grimmett, G. R.; Holroyd, A. E. Geometry of Lipschitz percolation. Ann. Inst. Henri PoincarÄ‚Å Probab. Stat. 48 (2012), no. 2, 309–326.
  • Grimmett, Geoffrey R.; Holroyd, Alexander E. Lattice embeddings in percolation. Ann. Probab. 40 (2012), no. 1, 146–161.
  • Liggett, Thomas M. Interacting particle systems. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 276. Springer-Verlag, New York, 1985. xv+488 pp. ISBN: 0-387-96069-4
  • Liggett, T. M.; Schonmann, R. H.; Stacey, A. M. Domination by product measures. Ann. Probab. 25 (1997), no. 1, 71–95.
  • Lyons, Russell. Phase transitions on nonamenable graphs. Probabilistic techniques in equilibrium and nonequilibrium statistical physics. J. Math. Phys. 41 (2000), no. 3, 1099–1126.
  • Russo, Lucio. An approximate zero-one law. Z. Wahrsch. Verw. Gebiete 61 (1982), no. 1, 129–139.
  • Zerner, Martin P. W. Interpolation percolation. Electron. J. Probab. 16 (2011), no. 33, 981–1000.