Electronic Journal of Probability

Convergence of clock process in random environments and aging in Bouchaud's asymmetric trap model on the complete graph

Véronique Gayrard

Full-text: Open access

Abstract

In this paper the celebrated arcsine aging scheme of Ben Arous and Černý is taken up. Using a brand new approach based on point processes and weak convergence techniques, this scheme is implemented in a broad class of Markov jump processes in random environments that includes Glauber dynamics of discrete disordered systems. More specifically, conditions are given for the underlying clock process (a partial sum process that measures the total time elapsed along paths of a given length) to converge to a subordinator, and consequences for certain time correlation functions are drawn. This approach is applied to Bouchaud's asymmetric trap model on the complete graph for which aging is for the first time proved, and the full, optimal picture,  obtained. Application to  spin glasses are carried out in follow up papers.

Article information

Source
Electron. J. Probab., Volume 17 (2012), paper no. 58, 33 pp.

Dates
Accepted: 1 August 2012
First available in Project Euclid: 4 June 2016

Permanent link to this document
https://projecteuclid.org/euclid.ejp/1465062380

Digital Object Identifier
doi:10.1214/EJP.v17-2211

Mathematical Reviews number (MathSciNet)
MR2959064

Zentralblatt MATH identifier
1252.82091

Subjects
Primary: 82C44: Dynamics of disordered systems (random Ising systems, etc.)
Secondary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 82D30: Random media, disordered materials (including liquid crystals and spin glasses) 60F17: Functional limit theorems; invariance principles

Keywords
Aging clock processes random dynamics random environments subordinators trap models

Rights
This work is licensed under aCreative Commons Attribution 3.0 License.

Citation

Gayrard, Véronique. Convergence of clock process in random environments and aging in Bouchaud's asymmetric trap model on the complete graph. Electron. J. Probab. 17 (2012), paper no. 58, 33 pp. doi:10.1214/EJP.v17-2211. https://projecteuclid.org/euclid.ejp/1465062380


Export citation

References

  • Barlow, Martin T.; Černý, Jiří. Convergence to fractional kinetics for random walks associated with unbounded conductances. Probab. Theory Related Fields 149 (2011), no. 3-4, 639–673.
  • Ben Arous, Gérard; Bovier, Anton; Černý, Jiří. Universality of the REM for dynamics of mean-field spin glasses. Comm. Math. Phys. 282 (2008), no. 3, 663–695.
  • Ben Arous, Gérard; Bovier, Anton; Gayrard, Véronique. Glauber dynamics of the random energy model. I. Metastable motion on the extreme states. Comm. Math. Phys. 235 (2003), no. 3, 379–425.
  • Ben Arous, Gérard; Bovier, Anton; Gayrard, Véronique. Glauber dynamics of the random energy model. II. Aging below the critical temperature. Comm. Math. Phys. 236 (2003), no. 1, 1–54.
  • Ben Arous, G., Bovier, A. and Gayrard, V.: Aging in the Random Energy Model. phPhys. Rev. Letts. 88, (2002), 87201–87204.
  • Ben Arous, Gérard; Černý, Jiří. Bouchaud's model exhibits two different aging regimes in dimension one. Ann. Appl. Probab. 15 (2005), no. 2, 1161–1192.
  • Ben Arous, Gérard; Černý, Jiří. Dynamics of trap models. Mathematical statistical physics, 331–394, Elsevier B. V., Amsterdam, 2006.
  • Ben Arous, Gérard; Černý, Jiří. Scaling limit for trap models on $\Bbb Z^ d$. Ann. Probab. 35 (2007), no. 6, 2356–2384.
  • Ben Arous, Gérard; Černý, Jiří. The arcsine law as a universal aging scheme for trap models. Comm. Pure Appl. Math. 61 (2008), no. 3, 289–329.
  • Ben Arous, Gérard; Černý, Jiří; Mountford, Thomas. Aging in two-dimensional Bouchaud's model. Probab. Theory Related Fields 134 (2006), no. 1, 1–43.
  • Bertoin, Jean. Lévy processes. Cambridge Tracts in Mathematics, 121. Cambridge University Press, Cambridge, 1996. x+265 pp. ISBN: 0-521-56243-0
  • Bertoin, J.; van Harn, K.; Steutel, F. W. Renewal theory and level passage by subordinators. Statist. Probab. Lett. 45 (1999), no. 1, 65–69.
  • Billingsley, Patrick. Convergence of probability measures. John Wiley & Sons, Inc., New York-London-Sydney 1968 xii+253 pp.
  • Bingham, N. H.; Goldie, C. M.; Teugels, J. L. Regular variation. Encyclopedia of Mathematics and its Applications, 27. Cambridge University Press, Cambridge, 1989. xx+494 pp. ISBN: 0-521-37943-1
  • Bouchaud, J.-P.: Weak ergodicity breaking and aging in disordered systems. phJ. Phys. I (France) 2, (1992), 1705–1713.
  • Bouchaud, J.-P., Rinn, B. and Mass, P.: Hopping in the glass configuration space: Subaging and generalized scaling laws. phPhys. Rev. B 64, (2001), 104417.
  • Bouchaud, J.-P., Cugliandolo, L., Kurchan, J. and Mézard, M.: Lévy processes. Out-of-equilibrium dynamics in spin-glasses and other glassy systems. In: A.P. Young, ed. Spin glasses and random fields. phWorld Scientific Singapore, 1998.
  • Bouchaud, J.-P. and Dean, D.: Aging on Parisi's tree. phJ. Phys. I (France) 5, (1995), 265.
  • Bovier, A. and Gayrard, V.: Convergence of clock processes in random environments and ageing in the p-spin SK model. To appear in phAnn. Probab. (2012).
  • Bovier, A., Gayrard, V. and Svejda, A.: Convergence of clock processes in random environments and ageing in the p-spin SK model, ARXIVmath.PR/1201.2059
  • Durrett, Richard; Resnick, Sidney I. Functional limit theorems for dependent variables. Ann. Probab. 6 (1978), no. 5, 829–846.
  • Dynkin, E. B. Some limit theorems for sums of independent random quantities with infinite mathematical expectations. (Russian) Izv. Akad. Nauk SSSR. Ser. Mat. 19 (1955), 247–266.
  • Etemadi, N. An elementary proof of the strong law of large numbers. Z. Wahrsch. Verw. Gebiete 55 (1981), no. 1, 119–122.
  • Feller, William. An introduction to probability theory and its applications. Vol. II. Second edition John Wiley & Sons, Inc., New York-London-Sydney 1971 xxiv+669 pp.
  • Fontes, L. R. G.; Isopi, M.; Newman, C. M. Random walks with strongly inhomogeneous rates and singular diffusions: convergence, localization and aging in one dimension. Ann. Probab. 30 (2002), no. 2, 579–604.
  • Gayrard, V.: Aging in reversible dynamics of disordered systems. I. Emergence of the arcsine law in in Bouchaud's asymmetric trap model on the complete graph, ARXIVmath.PR/1008.3855
  • Gayrard, V.: Aging in reversible dynamics of disordered systems. II. Emergence of the arcsine law in the random hopping time dynamics of the REM, ARXIVmath.PR/1008.3849
  • Gayrard, V.: Convergence of clock processes and aging in Metropolis dynamics in random environments. Preprint in preparation, LAPT, Marseille.
  • van Harn, K.; Steutel, F. W. Stationarity of delayed subordinators. Stoch. Models 17 (2001), no. 3, 369–374.
  • Kingman, J. F. C. Poisson processes. Oxford Studies in Probability, 3. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1993. viii+104 pp. ISBN: 0-19-853693-3
  • Lamperti, John. Some limit theorems for stochastic processes. J. Math. Mech. 7 1958 433–448.
  • LePage, Raoul; Woodroofe, Michael; Zinn, Joel. Convergence to a stable distribution via order statistics. Ann. Probab. 9 (1981), no. 4, 624–632.
  • Monthus, C. and Bouchaud J.-P.: Models of traps and glass phenomenology. phJ. Phys. A 29, (1996), 3847–3869.
  • Pitman, Jim; Yor, Marc. The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator. Ann. Probab. 25 (1997), no. 2, 855–900.
  • Resnick, Sidney I. Extreme values, regular variation, and point processes. Applied Probability. A Series of the Applied Probability Trust, 4. Springer-Verlag, New York, 1987. xii+320 pp. ISBN: 0-387-96481-9
  • Whitt, Ward. Stochastic-process limits. An introduction to stochastic-process limits and their application to queues. Springer Series in Operations Research. Springer-Verlag, New York, 2002. xxiv+602 pp. ISBN: 0-387-95358-2