Electronic Journal of Probability

A Discrete Approach to Rough Parabolic Equations

Aurélien Deya

Full-text: Open access

Abstract

<p>By combining the formalism of [8] with a discrete approach close to the considerations of [6], we interpret and we solve the rough partial differential equation $$dy_t=Ay_tdt+\sum_{i=1}^mf_i(y_t)dx_t^i, t\in[0,T]$$ on a compact domain $\mathcal{O}$ of $\mathbb{R}^n$, where  $A$ is a rather general elliptic operator of $L^p(\mathcal{O})$, $p&gt;1$, and $f_i(\varphi)(\xi)=f_i(\varphi(\xi))$, and $x$ is the generator of a 2-rough path. The (global) existence, uniqueness and continuity of a solution is established under classical regularity assumptions for $f_i$. Some identification procedures are also provided in order to justify our interpretation of the problem.</p>

Article information

Source
Electron. J. Probab., Volume 16 (2011), paper no. 55, 1489-1518.

Dates
Accepted: 19 August 2011
First available in Project Euclid: 1 June 2016

Permanent link to this document
https://projecteuclid.org/euclid.ejp/1464820224

Digital Object Identifier
doi:10.1214/EJP.v16-919

Mathematical Reviews number (MathSciNet)
MR2827468

Zentralblatt MATH identifier
1246.60086

Subjects
Primary: 60H05: Stochastic integrals
Secondary: 60H07: Stochastic calculus of variations and the Malliavin calculus 60G15: Gaussian processes

Keywords
Rough paths theory Stochastic PDEs Fractional Brownian motion

Rights
This work is licensed under aCreative Commons Attribution 3.0 License.

Citation

Deya, Aurélien. A Discrete Approach to Rough Parabolic Equations. Electron. J. Probab. 16 (2011), paper no. 55, 1489--1518. doi:10.1214/EJP.v16-919. https://projecteuclid.org/euclid.ejp/1464820224


Export citation

References

  • Brzeźniak, Zdzisław. On stochastic convolution in Banach spaces and applications. Stochastics Stochastics Rep. 61 (1997), no. 3-4, 245–295.
  • Caruana, Michael; Friz, Peter. Partial differential equations driven by rough paths. J. Differential Equations 247 (2009), no. 1, 140–173.
  • Caruana, Michael; Friz, Peter K.; Oberhauser, Harald. A (rough) pathwise approach to a class of non-linear stochastic partial differential equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 28 (2011), no. 1, 27–46.
  • Coutin, Laure; Qian, Zhongmin. Stochastic analysis, rough path analysis and fractional Brownian motions. Probab. Theory Related Fields 122 (2002), no. 1, 108–140.
  • Da Prato, Giuseppe; Zabczyk, Jerzy. Stochastic equations in infinite dimensions.Encyclopedia of Mathematics and its Applications, 44. Cambridge University Press, Cambridge, 1992. xviii+454 pp. ISBN: 0-521-38529-6
  • Davie, A. M. Differential equations driven by rough paths: an approach via discrete approximation. Appl. Math. Res. Express. AX 2007, no. 2, Art. ID abm009, 40 pp.
  • Davies, E. B. Heat kernels and spectral theory.Cambridge Tracts in Mathematics, 92. Cambridge University Press, Cambridge, 1990. x+197 pp. ISBN: 0-521-40997-7
  • Deya, A. and Gubinelli, M. and Tindel, S. (2011). Non-linear Rough Heat Equations. To appear in Probab. Theory Related Fields.
  • Diehl, J. and Friz, P. (2011). Backward stochastic differential equations with rough drivers. To appear in Ann. Probab.
  • Friz, Peter; Oberhauser, Harald. A generalized Fernique theorem and applications. Proc. Amer. Math. Soc. 138 (2010), no. 10, 3679–3688.
  • Friz, Peter; Victoir, Nicolas. Euler estimates for rough differential equations. J. Differential Equations 244 (2008), no. 2, 388–412.
  • bibitem Friz, P. and Victoir, N. (2010). it Multidimensional dimensional processes seen as rough paths. Cambridge University Press. 2604669
  • Gubinelli, M. Controlling rough paths. J. Funct. Anal. 216 (2004), no. 1, 86–140.
  • Gubinelli, M. and Lejay, A. and Tindel, S. (2006). Young integrals and SPDEs. Potential Anal., 25, 307-326.
  • Gubinelli, Massimiliano; Tindel, Samy. Rough evolution equations. Ann. Probab. 38 (2010), no. 1, 1–75.
  • Jentzen, A. and Roeckner, M. (2010). Regularity Analysis for Stochastic Partial Differential Equations with Nonlinear Multiplicative Trace Class Noise. ArXiv preprint.
  • Lyons, Terry J. Differential equations driven by rough signals. Rev. Mat. Iberoamericana 14 (1998), no. 2, 215–310.
  • Lyons, Terry; Qian, Zhongmin. System control and rough paths.Oxford Mathematical Monographs. Oxford Science Publications.Oxford University Press, Oxford, 2002. x+216 pp. ISBN: 0-19-850648-1
  • Pazy, A. Semigroups of linear operators and applications to partial differential equations.Applied Mathematical Sciences, 44. Springer-Verlag, New York, 1983. viii+279 pp. ISBN: 0-387-90845-5
  • Prüss, Jan; Sohr, Hermann. Imaginary powers of elliptic second order differential operators in $Lsp p$-spaces. Hiroshima Math. J. 23 (1993), no. 1, 161–192.
  • Runst, Thomas; Sickel, Winfried. Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations.de Gruyter Series in Nonlinear Analysis and Applications, 3. Walter de Gruyter & Co., Berlin, 1996. x+547 pp. ISBN: 3-11-015113-8
  • Seeley, R. Interpolation in $Lsp{p}$ with boundary conditions.Collection of articles honoring the completion by Antoni Zygmund of 50 years of scientific activity, I. Studia Math. 44 (1972), 47–60.
  • Sickel, Winfried. Composition operators acting on Sobolev spaces of fractional order-a survey on sufficient and necessary conditions. Function spaces, differential operators and nonlinear analysis (Paseky nad Jizerou, 1995), 159–182, Prometheus, Prague, 1996.