Electronic Journal of Probability

Some Sufficient Conditions for Infinite Collisions of Simple Random Walks on a Wedge Comb

Xinxing Chen and Dayue Chen

Full-text: Open access


In this paper, we give some sufficient conditions for the infinite collisions of independent simple random walks on a wedge comb with profile $\{f(n):n\in\mathbb{Z}\}$. One interesting result is that two independent simple random walks on the wedge comb will collide infinitely many times if $f(n)$ has a growth order as $n\log(n)$. On the other hand, if $\{f(n):n\in\mathbb{Z}\}$ are given by i.i.d. non-negative random variables with finite mean, then for almost all wedge combs with such profile, three independent simple random walks on it will collide infinitely many times

Article information

Electron. J. Probab., Volume 16 (2011), paper no. 49, 1341-1355.

Accepted: 9 August 2011
First available in Project Euclid: 1 June 2016

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60J10: Markov chains (discrete-time Markov processes on discrete state spaces)
Secondary: 60K37: Processes in random environments

wedge comb simple random walk infinite collision property local time

This work is licensed under aCreative Commons Attribution 3.0 License.


Chen, Xinxing; Chen, Dayue. Some Sufficient Conditions for Infinite Collisions of Simple Random Walks on a Wedge Comb. Electron. J. Probab. 16 (2011), paper no. 49, 1341--1355. doi:10.1214/EJP.v16-907. https://projecteuclid.org/euclid.ejp/1464820218

Export citation


  • Barlow, M.T., Peres, Y., Sousi, P., Collisions of Random Walks,http://arxiv.org/PS_cache/arxiv/pdf/1003/1003.3255v1.pdf.
  • Chen, XinXing; Chen, DaYue. Two random walks on the open cluster of $\Bbb Z\sp 2$ meet infinitely often. Sci. China Math. 53 (2010), no. 8, 1971–1978.
  • Chen, Dayue; Wei, Bei; Zhang, Fuxi. A note on the finite collision property of random walks. Statist. Probab. Lett. 78 (2008), no. 13, 1742–1747.
  • Durrett, Richard. Probability.Theory and examples.The Wadsworth & Brooks/Cole Statistics/Probability Series. Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA, 1991. x+453 pp. ISBN: 0-534-13206-5.
  • Krishnapur, Manjunath; Peres, Yuval. Recurrent graphs where two independent random walks collide finitely often. Electron. Comm. Probab. 9 (2004), 72–81 (electronic).
  • Levin, David A.; Peres, Yuval; Wilmer, Elizabeth L. Markov chains and mixing times.With a chapter by James G. Propp and David B. Wilson.American Mathematical Society, Providence, RI, 2009. xviii+371 pp. ISBN: 978-0-8218-4739-8.
  • Liggett, Thomas M. Interacting particle systems.Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 276. Springer-Verlag, New York, 1985. xv+488 pp. ISBN: 0-387-96069-4.
  • Pólya, George. Collected papers. Vol. IV.Probability; combinatorics; teaching and learning in mathematics.Edited by Gian-Carlo Rota, M. C. Reynolds and R. M. Shortt.Mathematicians of Our Time, 22. MIT Press, Cambridge, MA, 1984. ix+642 pp. ISBN: 0-262-16097-8.
  • Revesz, P., Random walk in random and non-random environments. 2nd edition, World Scientific Publishing Co., New Jersey, 2005.
  • Woess, Wolfgang. Random walks on infinite graphs and groups.Cambridge Tracts in Mathematics, 138. Cambridge University Press, Cambridge, 2000. xii+334 pp. ISBN: 0-521-55292-3.