Electronic Journal of Probability
- Electron. J. Probab.
- Volume 16 (2011), paper no. 19, 531-551.
Sharp and Strict $L^p$-Inequalities for Hilbert-Space-Valued Orthogonal Martingales
Abstract
The paper contains the proofs of sharp moment estimates for Hilbert-space valued martingales under the assumptions of differential subordination and orthogonality. The results generalize those obtained by Banuelos and Wang. As an application, we sharpen an inequality for stochastic integrals with respect to Brownian motion.
Article information
Source
Electron. J. Probab., Volume 16 (2011), paper no. 19, 531-551.
Dates
Accepted: 27 March 2011
First available in Project Euclid: 1 June 2016
Permanent link to this document
https://projecteuclid.org/euclid.ejp/1464820188
Digital Object Identifier
doi:10.1214/EJP.v16-865
Mathematical Reviews number (MathSciNet)
MR2786641
Zentralblatt MATH identifier
1226.60063
Subjects
Primary: 60G44: Martingales with continuous parameter
Secondary: 60G42: Martingales with discrete parameter
Keywords
Martingale differential subordination orthogonal martingales moment inequality stochastic integral Brownian motion best constants
Rights
This work is licensed under aCreative Commons Attribution 3.0 License.
Citation
Osekowski, Adam. Sharp and Strict $L^p$-Inequalities for Hilbert-Space-Valued Orthogonal Martingales. Electron. J. Probab. 16 (2011), paper no. 19, 531--551. doi:10.1214/EJP.v16-865. https://projecteuclid.org/euclid.ejp/1464820188