Electronic Journal of Probability

Universality of Sine-Kernel for Wigner Matrices with a Small Gaussian Perturbation

Laszlo Erdos, Jose Ramirez, Benjamin Schlein, and Horng-Tzer Yau

Full-text: Open access


We consider $N\times N$ Hermitian random matrices with independent identically distributed entries (Wigner matrices). We assume that the distribution of the entries have a Gaussian component with variance $N^{-3/4+\beta}$ for some positive $\beta>0$. We prove that the local eigenvalue statistics follows the universal Dyson sine kernel.

Article information

Electron. J. Probab., Volume 15 (2010), paper no. 18, 526-604.

Accepted: 1 May 2010
First available in Project Euclid: 1 June 2016

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 15A52
Secondary: 82B44: Disordered systems (random Ising models, random Schrödinger operators, etc.)

Wigner random matrix Dyson sine kernel

This work is licensed under aCreative Commons Attribution 3.0 License.


Erdos, Laszlo; Ramirez, Jose; Schlein, Benjamin; Yau, Horng-Tzer. Universality of Sine-Kernel for Wigner Matrices with a Small Gaussian Perturbation. Electron. J. Probab. 15 (2010), paper no. 18, 526--604. doi:10.1214/EJP.v15-768. https://projecteuclid.org/euclid.ejp/1464819803

Export citation


  • Anderson, G., Guionnet, A., Zeitouni, O.: An Introduction to Random Matrices. Studies in advanced mathematics, 118, Cambridge University Press, 2009.
  • Bakry, D., Émery, M.: Diffusions hypercontractives. in: Séminaire de probabilités, XIX, 1983/84, 1123 Lecture Notes in Mathematics, Springer, Berlin, 1985, 177–206.
  • Ben Arous, G., Péché, S.: Universality of local eigenvalue statistics for some sample covariance matrices. Comm. Pure Appl. Math. LVIII (2005), 1–42.
  • Bobkov, S. G., Götze, F.: Exponential integrability and transportation cost related to logarithmic Sobolev inequalities. J. Funct. Anal. 163 (1999), no. 1, 1–28.
  • Borwein, P., Erdélyi, T.: Polynomials and Polynomial Inequalities. Springer, 1995.
  • Boutet de Monvel, A., Khorunzhy, A.: Asymptotic distribution of smoothed eigenvalue density. II. Wigner random matrices. Random Oper. and Stoch. Equ., 7 No. 2, (1999), 149-168.
  • Brézin, E., Hikami, S.: Correlations of nearby levels induced by a random potential. Nucl. Phys. B 479 (1996), 697–706, and Spectral form factor in a random matrix theory. Phys. Rev. E 55 (1997), 4067–4083.
  • Davies, E.B.: The functional calculus. J. London Math. Soc. (2) 52 (1) (1995), 166–176.
  • Deift, P.: Orthogonal polynomials and random matrices: a Riemann-Hilbert approach. Courant Lecture Notes in Mathematics 3, American Mathematical Society, Providence, RI, 1999.
  • Dyson, F.J.: Statistical theory of energy levels of complex systems, I, II, and III. J. Math. Phys. 3, 140-156, 157-165, 166-175 (1962).
  • Dyson, F.J.: A Brownian-motion model for the eigenvalues of a random matrix. J. Math. Phys. 3, 1191-1198 (1962).
  • Esposito, R., Marra, R., Yau, H.-T.: Navier-Stokes equation for stochastic particle systems on the lattice. Commun. Math. Phys. (1996) 182, no.2, 395-456.
  • Erdös, L., Schlein, B., Yau, H.-T.: Semicircle law on short scales and delocalization of eigenvectors for Wigner random matrices. Ann. Probab. 37, No. 3, 815–852 (2008).
  • Erdös, L., Schlein, B., Yau, H.-T.: Local semicircle law and complete delocalization for Wigner random matrices. Commun. Math. Phys. 287, 641–655 (2009).
  • Erdös, L., Schlein, B., Yau, H.-T.: Wegner estimate and level repulsion for Wigner random matrices. Int. Math. Res. Not., Vol. 2010, No. 3, 436-479 (2010).
  • Erdös, L., Péché, S., Ramirez, J., Schlein, B., Yau, H.-T.: Bulk Universality for Wigner Matrices. To appear in CPAM. Preprint http://arxiv.org/abs/0905.4176.
  • Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series and Products. Academic Press, 1979.
  • Guionnet, A., Zeitouni, O.: Concentration of the spectral measure for large matrices. Electronic Comm. in Probability 5 (2000) Paper 14.
  • Guionnet, A.: Large random matrices: Lectures on Macroscopic Asymptotics. École d'E\'té de Probabilités de Saint-Flour XXXVI-2006. Springer.
  • Guo, M.Z., Papanicolaou, G.C., Varadhan, S.R.S.: Nonlinear diffusion limit for a system with nearest neighbor interactions. Commun. Math. Phys. 118 (1988) no.1, 31-59.
  • Johansson, K.: Universality of the local spacing distribution in certain ensembles of Hermitian Wigner matrices. Comm. Math. Phys. 215 (2001), no.3. 683–705.
  • Ledoux, M.: The concentration of measure phenomenon. Mathematical Surveys and Monographs, 89 American Mathematical Society, Providence, RI, 2001.
  • Levin, E., Lubinsky, S. D.: Universality limits in the bulk for varying measures. Adv. Math. 219 (2008), 743-779.
  • Levin, E., Lubinsky, S. D.: Orthogonal polynomials for exponential weights. Springer 2001.
  • Mehta, M.L.: Random Matrices. Academic Press, New York, 1991.
  • Pastur, L., Shcherbina M.: Bulk universality and related properties of Hermitian matrix models. J. Stat. Phys. 130 (2008), no.2., 205-250.
  • Quastel, J., Yau, H.T.: Lattice gases, large deviations and the incompressible Navier-Stokes equations. Ann. of Math. (2) 148 (1998), no.1, 51-108.
  • Soshnikov, A.: Universality at the edge of the spectrum in Wigner random matrices. Comm. Math. Phys. 207 (1999), no.3. 697-733.
  • Tao, T., Vu, V.: Random matrices: universality of local eigenvalue statistics. Preprint arxiv:0906.0510.
  • Wigner, E.: Characteristic vectors of bordered matrices with infinite dimensions. Ann. of Math. 62 (1955), 548-564.