Electronic Journal of Probability

Uniform Estimates for Metastable Transition Times in a Coupled Bistable System

Florent Barret, Anton Bovier, and Sylvie Méléard

Full-text: Open access

Abstract

We consider a coupled bistable $N$-particle system on $\mathbb{R}^N$ driven by a Brownian noise, with a strong coupling corresponding to the synchronised regime. Our aim is to obtain sharp estimates on the metastable transition times between the two stable states, both for fixed $N$ and in the limit when $N$ tends to infinity, with error estimates uniform in $N$. These estimates are a main step towards a rigorous understanding of the metastable behavior of infinite dimensional systems, such as the stochastically perturbed Ginzburg-Landau equation. Our results are based on the potential theoretic approach to metastability.

Article information

Source
Electron. J. Probab., Volume 15 (2010), paper no. 12, 323-345.

Dates
Accepted: 9 April 2010
First available in Project Euclid: 1 June 2016

Permanent link to this document
https://projecteuclid.org/euclid.ejp/1464819797

Digital Object Identifier
doi:10.1214/EJP.v15-751

Mathematical Reviews number (MathSciNet)
MR2609590

Zentralblatt MATH identifier
1191.82040

Subjects
Primary: 82C44: Dynamics of disordered systems (random Ising systems, etc.)
Secondary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]

Keywords
Metastability coupled bistable systems stochastic Ginzburg-Landau equation metastable transition time capacity estimates

Rights
This work is licensed under aCreative Commons Attribution 3.0 License.

Citation

Barret, Florent; Bovier, Anton; Méléard, Sylvie. Uniform Estimates for Metastable Transition Times in a Coupled Bistable System. Electron. J. Probab. 15 (2010), paper no. 12, 323--345. doi:10.1214/EJP.v15-751. https://projecteuclid.org/euclid.ejp/1464819797


Export citation

References

  • F. Barret. Metastability: Application to a model of sharp asymptotics for capacities and exit/hitting times. Master thesis, ENS Cachan (2007).
  • N. Berglund, B. Fernandez, B. Gentz. Metastability in Interacting Nonlinear Stochastic Differential Equations I: From Weak Coupling to Synchronization. Nonlinearity 20(11), 2007, 2551-2581.
  • N. Berglund, B. Fernandez, B. Gentz. Metastability in Interacting Nonlinear Stochastic Differential Equations II: Large-N Behavior. Nonlinearity, 20(11), 2007, 2583-2614.
  • A. Bovier. Metastability, in Methods of Contemporary Statistical Mechanics (R. Kotecky, ed.), 177-221. Lecture Notes in Mathematics 1970. Springer, Berlin, 2009.
  • A. Bovier, M. Eckhoff, V. Gayrard, M. Klein. Metastability in reversible diffusion processes I. Sharp asymptotics for capacities and exit times. Journal of the European Mathematical Society 6(2), 2004, 399-424.
  • B. Bianchi, A. Bovier, I. Ioffe. Sharp asymptotics for metastability in the Random Field Curie-Weiss model. Electr. J. Probab. 14 (2008), 1541–1603.
  • S. Brassesco. Some results on small random perturbations of an infinite-dimensional dynamical system. Stochastic Process. Appl. 38 (1991), 33–53.
  • K.L. Chung, J.B. Walsh. Markov processes, Brownian motion, and time symmetry. Second edition. Springer, 2005.
  • M.I. Freidlin, A.D. Wentzell. Random Perturbations of Dynamical Systems. Springer, 1984.
  • W.G. Faris, G. Jona-Lasinio. Large fluctuations for a nonlinear heat equation with noise. J. Phys. A 15 (1982), 3025–3055.
  • M. Fukushima, Y. Mashima, M. Takeda. Dirichlet forms and symmetric Markov processes. de Gruyter Studies in Mathematics 19. Walter de Gruyter & Co., Berlin, 1994.
  • D. Gilbarg, N.S. Trudinger. Elliptic partial differential equations of second order. Springer, 2001.
  • R. Maier, D. Stein. Droplet nucleation and domain wall motion in a bounded interval. Phys. Rev. Lett. 87 (2001), 270601-1–270601-4.
  • F. Martinelli, E. Olivieri, E. Scoppola. Small random perturbations of finite- and infinite-dimensional dynamical systems: unpredictability of exit times. J. Statist. Phys. 55 (1989), 477–504.
  • E. Olivieri, M.E. Vares. Large deviations and metastability. Encyclopedia of Mathematics and its Applications. Cambridge University Press, 2005.
  • M. Reed, B. Simon. Methods of modern mathematical physics: I Functional Analysis. Second edition. Academic Press, 1980.
  • E. Vanden-Eijnden, M.G. Westdickenberg. Rare events in stochastic partial differential equations on large spatial domains. J. Stat. Phys. 131 (2008), 1023–1038.