Electronic Journal of Probability

Logarithmic Sobolev Inequality for Zero--Range Dynamics: Independence of the Number of Particles

Paolo Dai Pra and Gustavo Posta

Full-text: Open access

Abstract

We prove that the logarithmic-Sobolev constant for Zero-Range Processes in a box of diameter $L$ may depend on $L$ but not on the number of particles. This is a first, but relevant and quite technical step, in the proof that this logarithmic-Sobolev constant grows as the square of $L$, that is presented in a forthcoming paper.

Article information

Source
Electron. J. Probab., Volume 10 (2005), paper no. 15, 525-576.

Dates
Accepted: 13 June 2005
First available in Project Euclid: 1 June 2016

Permanent link to this document
https://projecteuclid.org/euclid.ejp/1464816816

Digital Object Identifier
doi:10.1214/EJP.v10-259

Mathematical Reviews number (MathSciNet)
MR2147317

Zentralblatt MATH identifier
1109.60080

Rights
This work is licensed under aCreative Commons Attribution 3.0 License.

Citation

Dai Pra, Paolo; Posta, Gustavo. Logarithmic Sobolev Inequality for Zero--Range Dynamics: Independence of the Number of Particles. Electron. J. Probab. 10 (2005), paper no. 15, 525--576. doi:10.1214/EJP.v10-259. https://projecteuclid.org/euclid.ejp/1464816816


Export citation

References

  • Ané, Cécile; Blachère, Sébastien; Chafaï, Djalil; Fougères, Pierre; Gentil, Ivan; Malrieu, Florent; Roberto, Cyril; Scheffer, Grégory. Sur les inégalités de Sobolev logarithmiques. (French) [Logarithmic Sobolev inequalities] With a preface by Dominique Bakry and Michel Ledoux. Panoramas et Synthèses [Panoramas and Syntheses], 10. Société Mathématique de France, Paris, 2000. xvi+217 pp. ISBN: 2-85629-105-8
  • Cancrini, N.; Martinelli, F.; Roberto, C. The logarithmic Sobolev constant of Kawasaki dynamics under a mixing condition revisited. Ann. Inst. H. Poincaré Probab. Statist. 38 (2002), no. 4, 385–436.
  • Dai Pra, Paolo; Posta, Gustavo. Logarithmic Sobolev inequality for zero-range dynamics. Ann. Probab. 33 (2005), no. 6, 2355–2401.
  • Kipnis, Claude; Landim, Claudio. Scaling limits of interacting particle systems. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 320. Springer-Verlag, Berlin, 1999. xvi+442 pp. ISBN: 3-540-64913-1
  • Landim, C.; Sethuraman, S.; Varadhan, S. Spectral gap for zero-range dynamics. Ann. Probab. 24 (1996), no. 4, 1871–1902.
  • Liggett, Thomas M. Interacting particle systems. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 276. Springer-Verlag, New York, 1985. xv+488 pp. ISBN: 0-387-96069-4
  • Lu, Sheng Lin; Yau, Horng-Tzer. Spectral gap and logarithmic Sobolev inequality for Kawasaki and Glauber dynamics. Comm. Math. Phys. 156 (1993), no. 2, 399–433.
  • Miclo, L. An example of application of discrete Hardy's inequalities. Markov Process. Related Fields 5 (1999), no. 3, 319–330.
  • Posta, Gustavo. Spectral gap for an unrestricted Kawasaki type dynamics. ESAIM Probab. Statist. 1 (1995/97), 145–181 (electronic).