Electronic Journal of Probability

Mixing Time Bounds via the Spectral Profile

Sharad Goel, Ravi Montenegro, and Prasad Tetali

Full-text: Open access

Abstract

On complete, non-compact manifolds and infinite graphs, Faber-Krahn inequalities have been used to estimate the rate of decay of the heat kernel. We develop this technique in the setting of finite Markov chains, proving upper and lower $L^{\infty}$ mixing time bounds via the spectral profile. This approach lets us recover and refine previous conductance-based bounds of mixing time (including the Morris-Peres result), and in general leads to sharper estimates of convergence rates. We apply this method to several models including groups with moderate growth, the fractal-like Viscek graphs, and the product group $Z_a \times Z_b$, to obtain tight bounds on the corresponding mixing times.

Article information

Source
Electron. J. Probab., Volume 11 (2006), paper no. 1, 1-26.

Dates
Accepted: 24 January 2006
First available in Project Euclid: 31 May 2016

Permanent link to this document
https://projecteuclid.org/euclid.ejp/1464730536

Digital Object Identifier
doi:10.1214/EJP.v11-300

Mathematical Reviews number (MathSciNet)
MR2199053

Zentralblatt MATH identifier
1109.60061

Rights
This work is licensed under aCreative Commons Attribution 3.0 License.

Citation

Goel, Sharad; Montenegro, Ravi; Tetali, Prasad. Mixing Time Bounds via the Spectral Profile. Electron. J. Probab. 11 (2006), paper no. 1, 1--26. doi:10.1214/EJP.v11-300. https://projecteuclid.org/euclid.ejp/1464730536


Export citation

References

  • D. Aldous and J. Fill, Reversible Markov chains and random walks on graphs, Monograph in preparation available on the web at stat-www.berkeley.edu/users/aldous/RWG/book.html.
  • Martin Barlow, Thierry Coulhon, and Alexander Grigor'yan, Manifolds and graphs with slow heat kernel decay, Invent. Math. 144 (2001), 609-649.
  • Sergey G. Bobkov and Prasad Tetali, Modified log-Sobolev inequalities in discrete settings, Proc. of the ACM STOC 2003, 2003, pp.287-296.
  • T. Coulhon, A. Grigor'yan, and C. Pittet, A geometric approach to on-diagonal heat kernel lower bound on groups, Ann. Inst. Fourier 51 (2001), 1763-1827.
  • E. Carlen, S. Kusuoka, and D. Stroock, Upper bounds for symmetric Markov transition functions, Ann. Inst. H. Poincaré Probab. Statist. 23 (1987), 245-287.
  • T. Coulhon, Ultracontractivity and Nash type inequalities, J. Funct. Anal. 141 (1996), 510-539.
  • Thierry Coulhon and Laurent Saloff-Coste, Marches aléatoires nonsymétriques sur les groupes unimodulaires, C. R. Acad. Sci. Paris Sér. I Math. 310 (1990), no. 8, 627-630.
  • Thierry Coulhon and Laurent Saloff-Coste, Puissances d'un opérateur régularisant, Ann. Inst. H. Poincaré Probab. Statist. 26 (1990), no. 3, 419-436.
  • E.B. Davies, Heat kernels and spectral theory, Cambridge University Press, 1990.
  • P. Diaconis and L. Saloff-Coste, Moderate growth and random walk on finite groups, Geom. and Funct. Anal. 4 (1994), 1-34.
  • Persi Diaconis and Laurent Saloff-Coste, An application of harnack inequalities to random walk on nilpotent quotients, Proceedings of the Conference in Honor of Jean-Pierre Kahane (Orsay, 1993), J. Fourier Anal. Appl., Special Issue, 1995, pp. 189-207.
  • P. Diaconis and L. Saloff-Coste, Logarithmic Sobolev inequalities for finite Markov chains, Ann. Appl. Prob. 6 (1996), 695-750.
  • P. Diaconis and L. Saloff-Coste, Nash inequalities for finite Markov chains, J. Theoret. Probab. 9 (1996), no. 2, 459-510.
  • A. Grigor'yan, Heat kernel upper bounds on a complete non-compact manifold, Revista Matemática Iberoamericana 10 (1994), 395-452.
  • L. Gross, Logarithmic Sobolev inequalities, Amer. J. Math. 97 (1975), 1061-1083.
  • L. Gross, Logarithmic Sobolev inequalities and contractivity properties of semigroups, Lecture Notes in Mathematics, vol. 1563, Springer, 1993.
  • L. Lovász and R. Kannan, Faster mixing via average conductance, Annual ACM Symposium on theory of computing (Atlanta, GA, 1999), ACM, 1999, pp. 282-287.
  • R. Latala and K. Oleszkiewicz, Between Sobolev and Poincaré, Geometric Aspects of Functional Analysis, Lect. Notes in Math., vol. 1745, 2000, pp. 147-168.
  • G.F. Lawler and A.D. Sokal, Bounds on the L2 spectrum for Markov chains and Markov processes: a generalization of Cheeger's inequality, Trans. Amer. Math. Soc. 309 (1988), 557-580.
  • Ben Morris and Yuval Peres, Evolving sets, mixing and heat kernel bounds, Preprint.
  • J. Nash, Continuity of solutions of parabolic and elliptic equations, Amer. J. Math. 80 (1958), 931-954.
  • Ch. Pittet and L. Saloff-Coste, Isoperimetry, volume growth and random walks, Monograph in preparation.
  • Laurent Saloff-Coste, Lectures on finite Markov chains, Lectures on Probability Theory and Statistics (P. Bernard, ed.), Lecture Notes in Mathematics, vol. 1665, Ecole d'Eté de Probabiltés de Saint-Flour XXVI, Springer, 1996.
  • A.J. Sinclair and M. R. Jerrum, Approximate counting, uniform generation and rapidly mixing Markov chains, Information and Computation 82 (1989), 93-133.