Electronic Communications in Probability

The genealogy of an exactly solvable Ornstein–Uhlenbeck type branching process with selection

Aser Cortines and Bastien Mallein

Full-text: Open access


We study the genealogy of an exactly solvable population model with $N$ particles on the real line, which evolves according to a discrete-time branching process with selection. At each time step, every particle gives birth to children around $a$ times its current position, where $a>0$ is a parameter of the model. Then, the $N$ rightmost newborn children are selected to form the next generation. We show that the genealogy of the process converges toward a Beta coalescent as $N \to \infty $. The process we consider can be seen as a toy model version of a continuous-time branching process with selection, in which particles move according to independent Ornstein–Uhlenbeck processes. The parameter $a$ is akin to the pulling strength of the Ornstein–Uhlenbeck process.

Article information

Electron. Commun. Probab., Volume 23 (2018), paper no. 98, 13 pp.

Received: 6 February 2018
Accepted: 19 November 2018
First available in Project Euclid: 18 December 2018

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: S0J80 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]
Secondary: 92D15: Problems related to evolution

branching random walk selection beta coalescent Poisson point process

Creative Commons Attribution 4.0 International License.


Cortines, Aser; Mallein, Bastien. The genealogy of an exactly solvable Ornstein–Uhlenbeck type branching process with selection. Electron. Commun. Probab. 23 (2018), paper no. 98, 13 pp. doi:10.1214/18-ECP197. https://projecteuclid.org/euclid.ecp/1545102494

Export citation


  • [1] Radosław Adamczak and Piotr Miłoś, $U$-statistics of Ornstein-Uhlenbeck branching particle system, J. Theoret. Probab. 27 (2014), no. 4, 1071–1111.
  • [2] Radosław Adamczak and Piotr Miłoś, CLT for Ornstein-Uhlenbeck branching particle system, Electron. J. Probab. 20 (2015), no. 42, 35.
  • [3] Louis-Pierre Arguin, Anton Bovier, and Nicola Kistler, The extremal process of branching Brownian motion, Probab. Theory Related Fields 157 (2013), no. 3-4, 535–574.
  • [4] E. Aïdékon, J. Berestycki, É. Brunet, and Z. Shi, Branching Brownian motion seen from its tip, Probab. Theory Related Fields 157 (2013), no. 1-2, 405–451.
  • [5] Jean Bérard and Jean-Baptiste Gouéré, Brunet-Derrida behavior of branching-selection particle systems on the line, Comm. Math. Phys. 298 (2010), no. 2, 323–342.
  • [6] Jean Bérard and Pascal Maillard, The limiting process of $N$-particle branching random walk with polynomial tails, Electron. J. Probab. 19 (2014), no. 22, 17.
  • [7] Julien Berestycki, Nathanaël Berestycki, and Jason Schweinsberg, The genealogy of branching Brownian motion with absorption, Ann. Probab. 41 (2013), no. 2, 527–618.
  • [8] Nathanaël Berestycki, Recent progress in coalescent theory, Ensaios Matemáticos [Mathematical Surveys], vol. 16, Sociedade Brasileira de Matemática, Rio de Janeiro, 2009.
  • [9] E. Bolthausen and A.-S. Sznitman, On Ruelle’s probability cascades and an abstract cavity method, Comm. Math. Phys. 197 (1998), no. 2, 247–276.
  • [10] É. Brunet, B. Derrida, A. H. Mueller, and S. Munier, Effect of selection on ancestry: an exactly soluble case and its phenomenological generalization, Phys. Rev. E (3) 76 (2007), no. 4, 041104, 20.
  • [11] Eric Brunet and Bernard Derrida, Shift in the velocity of a front due to a cutoff, Phys. Rev. E (3) 56 (1997), no. 3, part A, 2597–2604.
  • [12] Francis Comets and Aser Cortines, Finite-size corrections to the speed of a branching-selection process, Braz. J. Probab. Stat. 31 (2017), no. 3, 476–501.
  • [13] Aser Cortines, The genealogy of a solvable population model under selection with dynamics related to directed polymers, Bernoulli 22 (2016), no. 4, 2209–2236.
  • [14] Aser Cortines and Bastien Mallein, A $N$-branching random walk with random selection, ALEA Lat. Am. J. Probab. Math. Stat. 14 (2017), no. 1, 117–137.
  • [15] Olivier Couronné and Lucas Gerin, A branching-selection process related to censored Galton-Walton processes, Ann. Inst. Henri Poincaré Probab. Stat. 50 (2014), no. 1, 84–94.
  • [16] A. De Masi, P.A. Ferrari, E. Presutti, and N. Soprano-Loto, Non-local branching Brownians with annihilation and free boundary problems, Preprint, 2017.
  • [17] Rick Durrett and Daniel Remenik, Brunet-Derrida particle systems, free boundary problems and Wiener-Hopf equations, Ann. Probab. 39 (2011), no. 6, 2043–2078.
  • [18] R. A. Fisher, The genetical theory of natural selection, variorum ed., Oxford University Press, Oxford, 1999, Revised reprint of the 1930 original, Edited, with a foreword and notes, by J. H. Bennett.
  • [19] J. F. C. Kingman, On the genealogy of large populations, J. Appl. Probab. (1982), no. Special Vol. 19A, 27–43, Essays in statistical science.
  • [20] B. Mallein, $N$-branching random walk with $\alpha $-stable spine, Teor. Veroyatn. Primen. 62 (2017), no. 2, 365–392, Reprinted in Theory Probab. Appl. 62 (2018), no. 2, 295–318.
  • [21] Bastien Mallein, Branching random walk with selection at critical rate, Bernoulli 23 (2017), no. 3, 1784–1821.
  • [22] Michel Pain, Velocity of the $L$-branching Brownian motion, Electron. J. Probab. 21 (2016), Paper No. 28, 28.
  • [23] K. Pearson and A. Lee, On the laws of inheritance in man: I. Inheritance of physical characters, Biometrika 2 (1903), 357–462.
  • [24] Jim Pitman, Coalescents with multiple collisions, Ann. Probab. 27 (1999), no. 4, 1870–1902.
  • [25] R.V. Rohlfs, P. Harrigan, and R. Nielsen, Modeling gene expression evolution with an extended Ornstein–Uhlenbeck process accounting for Within-species variation, Mol. Biol. Evol. 31 (2014), no. 1, 201–211.
  • [26] Serik Sagitov, The general coalescent with asynchronous mergers of ancestral lines, J. Appl. Probab. 36 (1999), no. 4, 1116–1125.
  • [27] Jason Schweinsberg, Coalescent processes obtained from supercritical Galton-Watson processes, Stochastic Process. Appl. 106 (2003), no. 1, 107–139.
  • [28] Q. Shi, A growth-fragmentation model related to Ornstein-Uhlenbeck type processes, Preprint, 2017.
  • [29] S. Wright, Evolution in Mendelian populations, Genetics 16 (1931), 97–159.