Electronic Communications in Probability

Respondent-Driven Sampling and Sparse Graph Convergence

Siva Athreya and Adrian Röllin

Full-text: Open access

Abstract

We consider a particular respondent-driven sampling procedure governed by a graphon. Using a specific clumping procedure of the sampled vertices, we construct a sequence of sparse graphs. If the sequence of the vertex-sets is stationary, then the sequence of sparse graphs converges to the governing graphon in the cut-metric. The tools used are a concentration inequality for Markov chains and the Stein-Chen method.

Article information

Source
Electron. Commun. Probab., Volume 23 (2018), paper no. 3, 12 pp.

Dates
Received: 9 May 2017
Accepted: 4 December 2017
First available in Project Euclid: 3 February 2018

Permanent link to this document
https://projecteuclid.org/euclid.ecp/1517626933

Digital Object Identifier
doi:10.1214/17-ECP103

Mathematical Reviews number (MathSciNet)
MR3761563

Zentralblatt MATH identifier
1392.05097

Subjects
Primary: 05C80: Random graphs [See also 60B20]
Secondary: 37A30: Ergodic theorems, spectral theory, Markov operators {For operator ergodic theory, see mainly 47A35}

Keywords
Respondent-driven sampling random graph sparse-graph limits dense graph limits

Rights
Creative Commons Attribution 4.0 International License.

Citation

Athreya, Siva; Röllin, Adrian. Respondent-Driven Sampling and Sparse Graph Convergence. Electron. Commun. Probab. 23 (2018), paper no. 3, 12 pp. doi:10.1214/17-ECP103. https://projecteuclid.org/euclid.ecp/1517626933


Export citation

References

  • S. Athreya and A. Röllin (2016). Dense graph limits under respondent-driven sampling. Ann. App. Probab. 26, 2193–2210.
  • A. D. Barbour, L. Holst and S. Janson (1992). Poisson Approximation. Oxford University Press, New York.
  • B. Bollobás and O. Riordan (2009). Metrics for sparse graphs. In Surveys in Combinatorics 2009, volume 365 of London Math. Soc. Lecture Note Ser., pages 211–287. Cambridge University Press, Cambridge.
  • C. Borgs, J. T. Chayes, H. Cohn and Y. Zhao (2014a). An $L^p$ theory of sparse graph convergence I: limits, sparse random graph models, and power law distributions. arXiv preprint arXiv:1401.2906.
  • C. Borgs, J. T. Chayes, H. Cohn and Y. Zhao (2014b). An $L^p$ theory of sparse graph convergence II: LD convergence, quotients, and right convergence. arXiv preprint arXiv:1408.0744.
  • L. Goldstein and Y. Rinott (1996). Multivariate normal approximations by Stein’s method and size bias couplings. J. Appl. Probab. 33, 1–17.
  • D. D. Heckathorn (1997). Respondent-driven sampling: A new approach to the study of hidden populations. Soc. Probl. 44, pp. 174–199.
  • D. D. Heckathorn (2007). Extensions of respondent-driven sampling: analyzing continuous variables and controlling for differential recruitment. Sociol. Methodol. 37, 151–207.
  • S. Meyn and R. L. Tweedie (2009). Markov Chains and Stochastic Stability. Cambridge University Press, 2nd edition.
  • D. Paulin (2015). Concentration inequalities for Markov chains by Marton couplings and spectral methods. Electron. J. Probab. 20.
  • G. S. Rothbart, M. Fine and S. Sudman (1982). On finding and interviewing the needles in the haystack: The use of multiplicity sampling. Public Opin. Quart. 46, 408–421.
  • E. Volz, C. Weijnert, C. Cameron, M. Spiller, V. Barash, I. Degani and D. D. Heckathorn (2012). Respondend-Driven Sampling Analysis Tool (RDSAT), Version 7.1. Ithaca, NY, Cornell University.