Electronic Communications in Probability

First passage percolation on the exponential of two-dimensional branching random walk

Jian Ding and Subhajit Goswami

Full-text: Open access

Abstract

We consider the branching random walk $\{\mathcal R^N_z: z\in V_N\}$ with Gaussian increments indexed over a two-dimensional box $V_N$ of side length $N$, and we study the first passage percolation where each vertex is assigned weight $e^{\gamma \mathcal R^N_z}$ for $\gamma >0$. We show that for $\gamma >0$ sufficiently small but fixed, the expected FPP distance between the left and right boundaries is at most $O(N^{1 - \gamma ^2/10})$.

Article information

Source
Electron. Commun. Probab., Volume 22 (2017), paper no. 69, 14 pp.

Dates
Received: 19 October 2016
Accepted: 30 November 2017
First available in Project Euclid: 28 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.ecp/1514451624

Digital Object Identifier
doi:10.1214/17-ECP102

Mathematical Reviews number (MathSciNet)
MR3742400

Zentralblatt MATH identifier
06827051

Subjects
Primary: 60G15: Gaussian processes

Keywords
first passage percolation (FPP) branching random walk (BRW) Gaussian free field (GFF) Liouville quantum gravity (LQG)

Rights
Creative Commons Attribution 4.0 International License.

Citation

Ding, Jian; Goswami, Subhajit. First passage percolation on the exponential of two-dimensional branching random walk. Electron. Commun. Probab. 22 (2017), paper no. 69, 14 pp. doi:10.1214/17-ECP102. https://projecteuclid.org/euclid.ecp/1514451624


Export citation

References

  • [1] M. Aizenman, J. T. Chayes, L. Chayes, J. Fröhlich, and L. Russo. On a sharp transition from area law to perimeter law in a system of random surfaces. Comm. Math. Phys., 92(1):19–69, 1983.
  • [2] A. Auffinger, M. Damron, and J. Hanson. 50 years of first passage percolation. Preprint, available at arXiv:1511.03262.
  • [3] J. T. Chayes, L. Chayes, and R. Durrett. Connectivity properties of Mandelbrot’s percolation process. Probab. Theory Related Fields, 77(3):307–324, 1988.
  • [4] L. Chayes. Aspects of the fractal percolation process. In Fractal geometry and stochastics (Finsterbergen, 1994), volume 37 of Progr. Probab., pages 113–143. Birkhäuser, Basel, 1995.
  • [5] F. M. Dekking and R. W. J. Meester. On the structure of Mandelbrot’s percolation process and other random Cantor sets. J. Statist. Phys., 58(5–6):1109–1126, 1990.
  • [6] J. Ding and S. Goswami. Liouville first passage percolation: the weight exponent is strictly less than 1 at high temperatures. Preprint, available at arXiv:1605.08392.
  • [7] J. Ding and S. Goswami. Upper bounds on Liouville first passage percolation and Watabiki’s prediction. Preprint, available at arXiv:1610.09998.
  • [8] J. Ding, R. Roy, and O. Zeitouni. Convergence of the centered maximum of log-correlated gaussian fields. Preprint, available at arXiv:1503.04588.
  • [9] J. Ding and F. Zhang. Non-universality for first passage percolation on the exponential of log-correlated gaussian fields. Preprint, available at arXiv:1506.03293.
  • [10] A. Dunlap. Expected regularized total variation of brownian motion. Preprint, available at arXiv:1511.03633.
  • [11] B. Duplantier and S. Sheffield. Liouville quantum gravity and KPZ. Invent. Math., 185(2):333–393, 2011.
  • [12] G. R. Grimmett and H. Kesten. Percolation since Saint-Flour. In Percolation theory at Saint-Flour, Probab. St.-Flour, pages ix–xxvii. Springer, Heidelberg, 2012.
  • [13] E. Gwynne, N. Holden, and X. Sun. A distance exponent for liouville quantum gravity. Preprint, available at arXiv:1606.01214.
  • [14] T. Madaule. Maximum of a log-correlated gaussian field. Preprint, available at arXiv:1307.1365.
  • [15] J. Miller and S. Sheffield. Liouville quantum gravity and the brownian map iii: the conformal structure is determined. Preprint, available at arXiv:1608.05391.
  • [16] J. Miller and S. Sheffield. Quantum loewner evolution. Preprint, available at arXiv:1409.7055.
  • [17] A. M. Polyakov. Quantum geometry of bosonic strings. Phys. Lett. B, 103(3):207–210, 1981.
  • [18] R. Rhodes and V. Vargas. Gaussian multiplicative chaos and applications: a review. Probab. Surv., 11:315–392, 2014.