Electronic Communications in Probability

Anomalous heat kernel behaviour for the dynamic random conductance model

Stephen Buckley

Full-text: Open access


We introduce the time dynamic random conductance model and consider the heat kernel for the random walk on this environment. In the case where conductances are bounded above, an example environment is presented which exhibits heat kernel decay that is asymptotically slower than in the well studied time homogeneous case - being close to $O\left( n^{-1}\right) $ as opposed to $O\left( n^{-2}\right) $. The example environment given is a modification of an environment introduced in Berger, Biskup, Hoffman and Kozma (2008).

Article information

Electron. Commun. Probab., Volume 18 (2013), paper no. 1, 11 pp.

Accepted: 3 January 2013
First available in Project Euclid: 7 June 2016

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60G50: Sums of independent random variables; random walks
Secondary: 60J27: Continuous-time Markov processes on discrete state spaces 05C81: Random walks on graphs

heat kernel random walk in random environment random conductances

This work is licensed under a Creative Commons Attribution 3.0 License.


Buckley, Stephen. Anomalous heat kernel behaviour for the dynamic random conductance model. Electron. Commun. Probab. 18 (2013), paper no. 1, 11 pp. doi:10.1214/ECP.v18-2525. https://projecteuclid.org/euclid.ecp/1465315540

Export citation


  • Antal, Peter; Pisztora, Agoston. On the chemical distance for supercritical Bernoulli\n percolation. Ann. Probab. 24 (1996), no. 2, 1036–1048.
  • Bandyopadhyay, Antar; Zeitouni, Ofer. Random walk in dynamic Markovian random\n environment. ALEA Lat. Am. J. Probab. Math. Stat. 1 (2006), 205–224.
  • Barlow, Martin T.; Černý, Jiří. Convergence to fractional kinetics for random\n walks associated with unbounded conductances. Probab. Theory Related Fields 149 (2011), no.\n 3-4, 639–673.
  • Berger, N.; Biskup, M.; Hoffman, C. E.; Kozma, G. Anomalous heat-kernel decay for\n random walk among bounded random conductances. Ann. Inst. Henri Poincaré Probab. Stat. 44\n (2008), no. 2, 374–392.
  • M. Biskup and O. Boukhadra. Subdiffusive heat kernel decay in four-dimensional iid\n random conductance models. ARXIV1010.5542v1 arXiv:1010.5542v1 (2010).
  • Boldrighini, C.; Minlos, R. A.; Pellegrinotti, A. Almost-sure central limit theorem\n for a Markov model of random walk in dynamical random environment. Probab. Theory Related\n Fields 109 (1997), no. 2, 245–273.
  • Boukhadra, Omar. Heat-kernel estimates for random walk among random conductances with\n heavy tail. Stochastic Process. Appl. 120 (2010), no. 2, 182–194.
  • Boukhadra, Omar. Standard spectral dimension for the polynomial lower tail random\n conductances model. Electron. J. Probab. 15 (2010), no. 68, 2069–2086.
  • S. Buckley. Problems in Random Walks in Random Environments. DPhil thesis, University\n of Oxford (2011).
  • Coulhon, Thierry; Grigor'yan, Alexander; Zucca, Fabio. The discrete integral maximum\n principle and its applications. Tohoku Math. J. (2) 57 (2005), no. 4, 559–587.
  • Delmotte, Thierry. Parabolic Harnack inequality and estimates of Markov chains on\n graphs. Rev. Mat. Iberoamericana 15 (1999), no. 1, 181–232.
  • Giacomin, Giambattista; Olla, Stefano; Spohn, Herbert. Equilibrium fluctuations for\n $\nabla\phi$ interface model. Ann. Probab. 29 (2001), no. 3, 1138–1172.
  • Grimmett, Geoffrey. Percolation. Second edition. Grundlehren der Mathematischen\n Wissenschaften [Fundamental Principles of Mathematical Sciences], 321. Springer-Verlag,\n Berlin, 1999. xiv+444 pp. ISBN: 3-540-64902-6
  • Mathieu, Pierre; Remy, Elisabeth. Isoperimetry and heat kernel decay on percolation\n clusters. Ann. Probab. 32 (2004), no. 1A, 100–128.
  • Pang, M. M. H. Heat kernels of graphs. J. London Math. Soc. (2) 47 (1993), no. 1,\n 50–64.
  • Rassoul-Agha, Firas; Seppäläinen, Timo. An almost sure invariance principle for\n random walks in a space-time random environment. Probab. Theory Related Fields 133 (2005),\n no. 3, 299–314.
  • Saloff-Coste, L.; Zúñiga, J. Merging for time inhomogeneous finite Markov chains. I.\n Singular values and stability. Electron. J. Probab. 14 (2009), 1456–1494.
  • Saloff-Coste, L.; Zúñiga, J. Merging for inhomogeneous finite Markov chains, Part\n II: Nash and log-Sobolev inequalities. Ann. Probab. 39 (2011), no. 3, 1161–1203.
  • Sidoravicius, Vladas; Sznitman, Alain-Sol. Quenched invariance principles for walks on\n clusters of percolation or among random conductances. Probab. Theory Related Fields 129\n (2004), no. 2, 219–244.