Electronic Communications in Probability

Symmetric exclusion as a model of non-elliptic dynamical random conductances

Luca Avena

Full-text: Open access

Abstract

We consider a finite range symmetric exclusion process on the integer lattice in any dimension. We interpret it as a non-elliptic time-dependent random conductance model by setting conductances equal to one over the edges with end points occupied by particles of the exclusion process and to zero elsewhere. We prove a law of large number and a central limit theorem for the random walk driven by such a dynamical field of conductances using the Kipnis-Varhadan martingale approximation. Unlike the tagged particle in the exclusion process, which is in some sense similar to this model, this random walk is diffusive even in the one-dimensional nearest-neighbor symmetric case.

Article information

Source
Electron. Commun. Probab., Volume 17 (2012), paper no. 44, 8 pp.

Dates
Accepted: 1 October 2012
First available in Project Euclid: 7 June 2016

Permanent link to this document
https://projecteuclid.org/euclid.ecp/1465263177

Digital Object Identifier
doi:10.1214/ECP.v17-2081

Mathematical Reviews number (MathSciNet)
MR2988390

Zentralblatt MATH identifier
1252.60097

Subjects
Primary: 60K37: Processes in random environments
Secondary: 82C22: Interacting particle systems [See also 60K35]

Keywords
Random conductances law of large numbers invariance principle exclusion process

Rights
This work is licensed under a Creative Commons Attribution 3.0 License.

Citation

Avena, Luca. Symmetric exclusion as a model of non-elliptic dynamical random conductances. Electron. Commun. Probab. 17 (2012), paper no. 44, 8 pp. doi:10.1214/ECP.v17-2081. https://projecteuclid.org/euclid.ecp/1465263177


Export citation

References

  • S. Andres, Invariance principle for the random conductance model with dynamic bounded conductances. Preprint, available at arXiv:1202.0803 (2012).
  • Arratia, Richard. The motion of a tagged particle in the simple symmetric exclusion system on ${\bf Z}$. Ann. Probab. 11 (1983), no. 2, 362–373.
  • Biskup, Marek. Recent progress on the random conductance model. Probab. Surv. 8 (2011), 294–373.
  • O. Kipnis and C. Landim, phScailing limits of particle systems, Springer-Verlag Berlin Heidelberg (1999).
  • Kipnis, C.; Varadhan, S. R. S. Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions. Comm. Math. Phys. 104 (1986), no. 1, 1–19.
  • Liggett, Thomas M. Interacting particle systems. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 276. Springer-Verlag, New York, 1985. xv+488 pp. ISBN: 0-387-96069-4
  • Bolthausen, Erwin; Sznitman, Alain-Sol. Ten lectures on random media. DMV Seminar, 32. Birkhäuser Verlag, Basel, 2002. vi+116 pp. ISBN: 3-7643-6703-2
  • Zeitouni, Ofer. Random walks in random environments. J. Phys. A 39 (2006), no. 40, R433–R464.