Electronic Communications in Probability

Recursions and tightness for the maximum of the discrete, two dimensional Gaussian Free Field

Erwin Bolthausen, Jean-Dominique Deuschel, and Ofer Zeitouni

Full-text: Open access

Abstract

We consider the maximum of the discrete two dimensional Gaussian free field in a box, and prove the existence of a (dense) deterministic subsequence along which the maximum, centered at its mean, is tight. The method of proof relies on an argument developed by Dekking and Host for branching random walks with bounded increments and on comparison results specific to Gaussian fields.

Article information

Source
Electron. Commun. Probab., Volume 16 (2011), paper no. 11, 114-119.

Dates
Accepted: 16 February 2011
First available in Project Euclid: 7 June 2016

Permanent link to this document
https://projecteuclid.org/euclid.ecp/1465261967

Digital Object Identifier
doi:10.1214/ECP.v16-1610

Mathematical Reviews number (MathSciNet)
MR2772390

Zentralblatt MATH identifier
1236.60039

Subjects
Primary: 60G15: Gaussian processes
Secondary: 60G60: Random fields

Keywords
Gaussian free field. Recursions

Rights
This work is licensed under aCreative Commons Attribution 3.0 License.

Citation

Bolthausen, Erwin; Deuschel, Jean-Dominique; Zeitouni, Ofer. Recursions and tightness for the maximum of the discrete, two dimensional Gaussian Free Field. Electron. Commun. Probab. 16 (2011), paper no. 11, 114--119. doi:10.1214/ECP.v16-1610. https://projecteuclid.org/euclid.ecp/1465261967


Export citation

References

  • Addario-Berry, Louigi; Reed, Bruce. Minima in branching random walks. Ann. Probab. 37 (2009), no. 3, 1044–1079.
  • Bolthausen, Erwin; Deuschel, Jean-Dominique; Giacomin, Giambattista. Entropic repulsion and the maximum of the two-dimensional harmonic crystal. Ann. Probab. 29 (2001), no. 4, 1670–1692.
  • Bolthausen, Erwin; Deuschel, Jean-Dominique; Zeitouni, Ofer. Recursions and tightness for the maximum of the discrete, two dimensional gaussian free field. (2010). arXiv:1005.5417v1
  • Bramson, Maury; Zeitouni, Ofer. Tightness for the minimal displacement of branching random walk. J. Stat. Mech. Theory Exp. 2007, no. 7, P07010, 12 pp. (electronic).
  • Bramson, Maury; Zeitouni, Ofer. Tightness for a family of recursion equations. Ann. Probab. 37 (2009), no. 2, 615–653.
  • Bramson, Maury; Zeitouni, Ofer. Tightness of the recentered maximum of the two-dimensional discrete Gaussian Free Field. (2010). arXiv:1009.3443v1
  • Carpentier, D.; Le Doussal, P.. Glass transition for a particle in a random potential, front selection in nonlinear renormalization group, and entropic phenomena in liouville and sinh-gordon models. Phys. Rev. E. 63 (2001), 026110.
  • Chatterjee, Sourav. A new method of normal approximation. Ann. Probab. 36 (2008), no. 4, 1584–1610.
  • Daviaud, Olivier. Extremes of the discrete two-dimensional Gaussian free field. Ann. Probab. 34 (2006), no. 3, 962–986.
  • Dekking, F. M.; Host, B. Limit distributions for minimal displacement of branching random walks. Probab. Theory Related Fields 90 (1991), no. 3, 403–426.
  • Le Doussal, P.; Fyodorov, Y.; Rosso, A. newblock Statistical mechanics of logarithmic rem: duality, freezing and extreme value statistics of $1/f$ noises generated by gaussian free fields. J. Stat. Mech. (2009), P10005.
  • Fyodorov, Yan V.; Bouchaud, Jean-Philippe. Freezing and extreme-value statistics in a random energy model with logarithmically correlated potential. J. Phys. A 41 (2008), no. 37, 372001, 12 pp.
  • Hu, Xiaoyu; Miller, Jason; Peres, Yuval. Thick points of the Gaussian free field. Ann. Probab. 38 (2010), no. 2, 896–926.
  • Sheffield, Scott. Gaussian free fields for mathematicians. Probab. Theory Related Fields 139 (2007), no. 3-4, 521–541.