Electronic Communications in Probability

On the lower bound of the spectral norm of symmetric random matrices with independent entries

Sandrine Peche and Alexander Soshnikov

Full-text: Open access


We show that the spectral radius of an $N\times N$ random symmetric matrix with i.i.d. bounded centered but non-symmetrically distributed entries is bounded from below by $ 2 \sigma - o( N^{-6/11+\varepsilon}), $ where $\sigma^2 $ is the variance of the matrix entries and $\varepsilon $ is an arbitrary small positive number. Combining with our previous result from [7], this proves that for any $\varepsilon <0, \ $ one has $ \|A_N\| =2 \sigma + o( N^{-6/11+\varepsilon}) $ with probability going to $ 1 $ as $N \to \infty$.

Article information

Electron. Commun. Probab., Volume 13 (2008), paper no. 28, 280-290.

Accepted: 1 June 2008
First available in Project Euclid: 6 June 2016

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 15A52
Secondary: 60C05: Combinatorial probability

Wigner random matrices spectral norm

This work is licensed under aCreative Commons Attribution 3.0 License.


Peche, Sandrine; Soshnikov, Alexander. On the lower bound of the spectral norm of symmetric random matrices with independent entries. Electron. Commun. Probab. 13 (2008), paper no. 28, 280--290. doi:10.1214/ECP.v13-1376. https://projecteuclid.org/euclid.ecp/1465233455

Export citation


  • N. Alon, M. Krivelevich, and V. Vu, On the concentration of eigenvalues of random symmetric matrices. Israel J. Math. 131 (2002), 259-267.
  • L. Arnold. On the asymptotic distribution of the eigenvalues of random matrices. J. Math. Anal. Appl. 20 (1967), 262-268.
  • D.J. Daley, D. Vere-Jones. An Introduction to the Theory of Point Processes, Vol.I, Elementary theory and methods. Second edition. Probability and its Applications (New York). Springer-Verlag, New York, 2003. xxii+469 pp. ISBN 0-387-95541-0
  • Z. Füredi and J. Komlós. The eigenvalues of random symmetric matrices. Combinatorica 1 (1981), 233-241.
  • A. Guionnet and O. Zeitouni. Concentration of the spectral measure for large matrices. Electron. Comm. Probab. 5 (2000), 119-136.
  • M. Ledoux. The Concentration of Measure Phenomenon. Mathematical Surveys and Monographs, 89. American Mathematical Society, Providence, RI, 2001. x+181 pp. ISBN 0-8218-2864-9
  • M. Ledoux. Concentration of measure and logarithmic Sobolev inequalities. Séminaire de Probabilités, XXXIII, 120–216, Lecture Notes in Math., 1709, Springer, Berlin, 1999.
  • S.Péché and A. Soshnikov. Wigner random matrices with non-symmetrically distributed entries. J. Stat. Phys. 129 (2007), 857-884.
  • Y. Sinai and A. Soshnikov. Central limit theorem for traces of large random symmetric matrices with independent matrix elements. Bol. Soc. Brasil. Mat. (N.S.)29 (1998), 1-24.
  • Y. Sinai and A. Soshnikov. A refinement of Wigner's semicircle law in a neighborhood of the spectrum edge for random symmetric matrices. Funct. Anal. Appl.32 (1998), 114-131.
  • A. Soshnikov. Universality at the edge of the spectrum in Wigner random matrices. Commun. Math. Phys.207, (1999), 697-733.
  • M. Talagrand. Concentration of measures and isoperimetric inequalities in product spaces. Inst. Hautes Études Sci. Publications Mathematiques 81, (1996), 73-205.
  • C.A. Tracy, H. Widom. Level-spacing distribution and the Airy kernel. Commun. Math. Phys. 159, (1994), 151-174.
  • C.A. Tracy, H. Widom. On orthogonal and symplectic random matrix ensembles. Commun. Math. Phys.177 (1996), 724-754.
  • V.H. Vu. Spectral norm of random matrices. STOC'05: Proceedings of the 37th Annual ACM Symposium on Theory of Computing. 423–430, ACM, New York, 2005.
  • E. Wigner. Characteristic vectors of bordered matrices with infinite dimensions. Ann. of Math.62, (1955),548-564.
  • E. Wigner. On the distribution of the roots of certain symmetric matrices. Ann. of Math.67, (1958),325-328.