Electronic Communications in Probability

Internal Diffusion-Limited Aggregation on non-amenable graphs

Wilfried Huss

Full-text: Open access

Abstract

The stochastic growth model Internal Diffusion Limited Aggregation was defined in 1991 by Diaconis and Fulton. Several shape results are known when the underlying state space is the d-dimensional lattice, or a discrete group with exponential growth. We prove an extension of the shape result of Blachere and Brofferio for Internal Diffusion Limited Aggregation on a wide class of Markov chains on non-amenable graphs.

Article information

Source
Electron. Commun. Probab., Volume 13 (2008), paper no. 27, 272-279.

Dates
Accepted: 25 May 2008
First available in Project Euclid: 6 June 2016

Permanent link to this document
https://projecteuclid.org/euclid.ecp/1465233454

Digital Object Identifier
doi:10.1214/ECP.v13-1374

Mathematical Reviews number (MathSciNet)
MR2415135

Zentralblatt MATH identifier
1189.60178

Subjects
Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]
Secondary: 82B24: Interface problems; diffusion-limited aggregation 82B41: Random walks, random surfaces, lattice animals, etc. [See also 60G50, 82C41]

Keywords
interacting particle systems random walks on graphs

Rights
This work is licensed under aCreative Commons Attribution 3.0 License.

Citation

Huss, Wilfried. Internal Diffusion-Limited Aggregation on non-amenable graphs. Electron. Commun. Probab. 13 (2008), paper no. 27, 272--279. doi:10.1214/ECP.v13-1374. https://projecteuclid.org/euclid.ecp/1465233454


Export citation

References

  • Diaconis, P.; Fulton, W. A growth model, a game, an algebra, Lagrange inversion, and characteristic classes. Commutative algebra and algebraic geometry, II (Italian) (Turin, 1990). Rend. Sem. Mat. Univ. Politec. Torino 49 (1991), no. 1, 95–119 (1993).
  • Lawler, Gregory F.; Bramson, Maury; Griffeath, David. Internal diffusion limited aggregation. Ann. Probab. 20 (1992), no. 4, 2117–2140.
  • Lawler, Gregory F. Subdiffusive fluctuations for internal diffusion limited aggregation. Ann. Probab. 23 (1995), no. 1, 71–86.
  • Blachère, Sébastien. Agrégation limitée par diffusion interne et temps de coupure sur les groupes discrets à croissance polynomiale. PhD thesis, L'Universitée Paul Sabatier, 2000.
  • Blachère, Sébastien. Internal diffusion limited aggregation on discrete groups having polynomial growth. In Random Walks and Geometry, Proceedings (Erwin Schroedinger Insitute, Vienna 2001). de Gruyter, Berlin, 2004.
  • Blachère, Sébastien; Brofferio, Sara. Internal diffusion limited aggregation on discrete groups having exponential growth. Probab. Theory Related Fields 137 (2007), no. 3-4, 323–343.
  • Blachère, S; Haïssinsky, P; Mathieu, P. Asymptotic entropy and Green speed for random walks on countable groups. Ann. Probab. 36 (2008) n.3 1134–1152.
  • Woess, Wolfgang. Random walks on infinite graphs and groups. Cambridge Tracts in Mathematics, 138. Cambridge University Press, Cambridge, 2000. xii+334 pp. ISBN: 0-521-55292-3
  • Dodziuk, Jozef. Difference equations, isoperimetric inequality and transience of certain random walks. Trans. Amer. Math. Soc. 284 (1984), no. 2, 787–794.
  • Dodziuk, J.; Kendall, W. S. Combinatorial Laplacians and isoperimetric inequality. From local times to global geometry, control and physics (Coventry, 1984/85), 68–74, Pitman Res. Notes Math. Ser., 150, Longman Sci. Tech., Harlow, 1986.