Duke Mathematical Journal

Current fluctuations of the stationary ASEP and six-vertex model

Amol Aggarwal

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


Our results in this article are twofold. First, we consider current fluctuations of the stationary asymmetric simple exclusion process (ASEP), run for some long time T, and show that they are of order T1/3 along a characteristic line. Upon scaling by T1/3, we establish that these fluctuations converge to the long-time height fluctuations of the stationary Kardar–Parisi–Zhang (KPZ) equation, that is, to the Baik–Rains distribution. This result has long been predicted under the context of KPZ universality and in particular extends upon a number of results in the field, including the work of Ferrari and Spohn from 2005 (when they established the same result for the TASEP) and the work of Balázs and Seppäläinen from 2010 (when they established the T1/3-scaling for the general ASEP).

Second, we introduce a class of translation-invariant Gibbs measures that characterizes a one-parameter family of slopes for an arbitrary ferroelectric, symmetric six-vertex model. This family of slopes corresponds to what is known as the conical singularity (or tricritical point) in the free-energy profile for the ferroelectric six-vertex model. We consider fluctuations of the height function of this model on a large grid of size T and show that they too are of order T1/3 along a certain characteristic line; this confirms a prediction of Bukman and Shore from 1995, stating that the ferroelectric six-vertex model should exhibit KPZ growth at the conical singularity.

Upon scaling the height fluctuations by T1/3, we again recover the Baik–Rains distribution in the large T limit. Recasting this statement in terms of the (asymmetric) stochastic six-vertex model confirms a prediction of Gwa and Spohn from 1992.

Article information

Duke Math. J., Volume 167, Number 2 (2018), 269-384.

Received: 20 September 2016
Revised: 22 May 2017
First available in Project Euclid: 13 January 2018

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]
Secondary: 82C22: Interacting particle systems [See also 60K35]

asymmetric simple exclusion process six-vertex model conical singularity current fluctuations Kardar–Parisi–Zhang universality class


Aggarwal, Amol. Current fluctuations of the stationary ASEP and six-vertex model. Duke Math. J. 167 (2018), no. 2, 269--384. doi:10.1215/00127094-2017-0029. https://projecteuclid.org/euclid.dmj/1515812504

Export citation


  • [1] A. Aggarwal,Convergence of the stochastic six-vertex model to the ASEP, Math. Phys. Anal. Geom.20(2017), no. 3.
  • [2] A. Aggarwal and A. Borodin,Phase transitions in the ASEP and stochastic six-vertex model, to appear in Ann. Probab., preprint,arXiv:1607.08684v1[math.PR].
  • [3] D. Babbitt and E. Gutkin,The Plancherel formula for the infinite $XXZ$ Heisenberg spin chain, Lett. Math. Phys.20(1990), 91–99.
  • [4] D. Babbitt and L. Thomas,Ground state representation of the infinite one-dimensional Heisenberg ferromagnet, II: An explicit Plancherel formula, Comm. Math. Phys.54(1977), 255–278.
  • [5] J. Baik, P. L. Ferrari, and S. Péché,Limit process of stationary TASEP near the characteristic line, Comm. Pure Appl. Math.63(2010), 1017–1070.
  • [6] J. Baik, P. L. Ferrari, and S. Péché, “Convergence of the two-point function of the stationary TASEP” inSingular Phenomena and Scaling in Mathematical Models, Springer, Cham, 2014, 91–100.
  • [7] J. Baik and E. M. Rains,Limiting distribution for a polynuclear growth model with external sources, J. Statist. Phys.100(2000), 523–541.
  • [8] M. Balázs, J. Quastel, and T. Seppäläinen,Fluctuation exponent of the KPZ/stochastic Burgers equation, J. Amer. Math. Soc.24(2011), 683–708.
  • [9] M. Balázs and T. Seppäläinen,Fluctuation bounds for the asymmetric simple exclusion process, ALEA Lat. Am. J. Probab. Math. Stat.6(2009), 1–24.
  • [10] M. Balázs and T. Seppäläinen,Order of current variance and diffusivity in the asymmetric simple exclusion process, Ann. of Math. (2)171(2010), 1237–1265.
  • [11] R. J. Baxter,Exactly Solved Models in Statistical Mechanics, Academic Press, London, 1989.
  • [12] G. Ben-Arous and I. Corwin,Current fluctuations for TASEP: A proof of the Prähofer-Spohn conjecture, Ann. Probab.39(2011), 104–138.
  • [13] L. Bertini and G. Giacomin,Stochastic Burgers and KPZ equations from particle systems, Comm. Math. Phys.183(1997), 571–607.
  • [14] H. Bethe,Zur Theorie der Metalle, I: Eigenwerte und Eigenfunktionen der linearen Atomkette, Z. Phys.71(1931), 205–226.
  • [15] P. Bleher and K. Liechty,Random Matrices and the Six-Vertex Model, CRM Monogr. Ser.32, Amer. Math. Soc., Providence, 2014.
  • [16] A. Borodin, “Determinantal point processes” inThe Oxford Handbook of Random Matrix Theory, Oxford Univ. Press, Oxford, 2011, 231–249.
  • [17] A. Borodin,On a family of symmetric rational functions, Adv. Math.306(2017), 973–1018.
  • [18] A. Borodin and A. Bufetov,An irreversible local Markov chain that preserves the six vertex model on a torus, Ann. Inst. Henri Poincaré Probab. Stat.53(2017), 451–463.
  • [19] A. Borodin, A. Bufetov, and I. Corwin,Directed random polymers via nested contour integrals, Ann. Physics368(2016), 191–247.
  • [20] A. Borodin and I. Corwin,Macdonald processes, Probab. Theory Related Fields158(2014), 225–400.
  • [21] A. Borodin, I. Corwin, P. Ferrari, and B. Vető,Height fluctuations for the stationary KPZ equation, Math. Phys. Anal. Geom.18(2015), no. 20.
  • [22] A. Borodin, I. Corwin, and V. Gorin,Stochastic six-vertex model, Duke Math. J.165(2016), 563–624.
  • [23] A. Borodin, I. Corwin, and T. Sasamoto,From duality to determinants for $q$-TASEP and ASEP, Ann. Probab.42(2014), 2314–2382.
  • [24] A. Borodin and V. Gorin, “Lectures on integrable probability” inProbability and Statistical Physics in St. Petersburg, Proc. Sympos. Pure Math.91, Amer. Math. Soc., Providence, 2016, 155–214.
  • [25] A. Borodin and L. Petrov,Integrable probability: From representation theory to Macdonald processes, Probab. Surv.11(2014), 1–58.
  • [26] A. Borodin and L. Petrov,Higher spin six-vertex models and symmetric rational functions, Selecta Math. (N.S.), published electronically 20 December 2016.
  • [27] A. Borodin and L. Petrov, “Integrable probability: Stochastic vertex models and symmetric functions” inStochastic Processes and Random Matrices: Lecture Notes of the Les Houches Summer School,104, Oxford Univ. Press, Oxford, 2017.
  • [28] D. J. Bukman and J. D. Shore,The conical point in the ferroelectric six-vertex model, J. Statist. Phys.78(1995), 1277–1309.
  • [29] H. Cohn, R. Kenyon, and J. Propp,A variational principle for domino tilings, J. Amer. Math. Soc.14(2001), 297–346.
  • [30] I. Corwin,The Kardar–Parisi–Zhang equation and universality class, Random Matrices Theory Appl.1(2012), no. 1130001.
  • [31] I. Corwin, “Macdonald processes, quantum integrable systems, and the Kardar–Parisi–Zhang universality class” inProceedings of the International Congress of Mathematicians (Seoul, Korea, 2014), 2014, 1007–1034.
  • [32] I. Corwin, “Two ways to solve ASEP” inTopics in Percolative and Disordered Systems, Springer Proc. Math. Stat.69, Springer, New York, 2014, 1–13.
  • [33] I. Corwin and L. Petrov,Stochastic higher spin vertex models on the line, Comm. Math. Phys.343(2016), 651–700.
  • [34] I. Corwin and J. Quastel,Crossover distributions at the edge of the rarefaction fan, Ann. Probab.41(2013), 1243–1314.
  • [35] E. Dimitrov,Six-vertex models and the GUE-corners process, preprint,arXiv:1610.06893v2[math.PR].
  • [36] G. Felder, V. Tarasov, and A. Varchenko, “Solutions of the elliptic qKZB equations and Bethe Ansatz, I” inTopics in Singularity Theory, Amer. Math. Soc. Transl. Ser. 2180, Amer. Math. Soc., Providence, 1998, 45–75.
  • [37] P. A. Ferrari and L. R. G. Fontes,Current fluctuations for the asymmetric simple exclusion process, Ann. Probab.22(1994), 820–832.
  • [38] P. L. Ferrari and H. Spohn,Domino tilings and the six-vertex model at its free-fermionic point, J. Phys. A39, no. 33 (2006), 10297–10306.
  • [39] P. L. Ferrari and H. Spohn,Scaling limit for the space-time covariance of the stationary totally asymmetric simple exclusion process, Comm. Math. Phys.265(2006), 1–44.
  • [40] L.-H. Gwa and H. Spohn,Bethe solution for the dynamical-scaling exponent of the noisy Burgers equation, Phys. Rev. Lett.46, no. 2 (1992), 844–854.
  • [41] L.-H. Gwa and H. Spohn,Six-vertex model, roughened surfaces, and an asymmetric spin Hamiltonian, Phys. Rev. Lett.68, no. 6 (1992), 725–728.
  • [42] M. Hairer,Solving the KPZ equation, Ann. of Math. (2)178(2013), 559–664.
  • [43] M. Hairer,A theory of regularity structures, Invent. Math.198(2014), 269–504.
  • [44] T. Imamura and T. Sasamoto,Stationary correlations for the 1D KPZ equation, J. Stat. Phys.150(2013), 908–939.
  • [45] C. Jayaprakash and W. F. Saam,Thermal evolution of crystal shapes: The fcc crystal, Phys. Rev. B30(1984), 3916–3928.
  • [46] N. H. Jing,Vertex operators and Hall-Littlewood symmetric functions, Adv. Math.87(1991), 226–248.
  • [47] M. Kardar, G. Parisi, and Y.-C. Zhang,Dynamic scaling of growing interfaces, Phys. Rev. Lett.56, no. 9 (1986), 889–892.
  • [48] P. W. Kasteleyn, “Graph theory and crystal physics” inGraph Theory and Theoretical Physics, Academic Press, London, 1967, 43–110.
  • [49] R. Kenyon, “Lectures on dimers” inStatistical Mechanics, IAS/Park City Math. Ser.16, Amer. Math. Soc., Providence, 2009, 191–230.
  • [50] R. Kenyon, A. Okounkov, and S. Sheffield,Dimers and amoebae, Ann. of Math. (2)163(2006), 1019–1056.
  • [51] A. N. Kirillov and N. Y. Reshetikhin,Exact solution of the integrable $XXZ$ Heisenberg model with arbitrary spin, I: The ground state and the excitation spectrum, J. Phys. A.20, no. 6 (1987), 1565–1585.
  • [52] P. P. Kulish, N. Y. Reshetikhin, and E. K. Sklyanin,Yang-Baxter equation and representation theory, I, Lett. Math. Phys.5(1981), 393–403.
  • [53] C. Landim, J. Quastel, M. Salmhofer, and H.-T. Yau,Superdiffusivity of asymmetric exclusion process in dimensions one and two, Comm. Math. Phys.244(2004), 455–481.
  • [54] E. H. Lieb,Residual entropy of square ice, Phys. Rev. Lett.162(1) (1967), 162–172.
  • [55] T. M. Liggett,Coupling the simple exclusion process,Ann. Probab.4(1976), 339–356.
  • [56] T. M. Liggett,Stochastic Interacting Systems: Contact, Voter and Exclusion Processes, Grundlehren Math. Wiss.324, Springer, Berlin, 1999.
  • [57] J. MacDonald, J. Gibbs, and A. Pipkin,Kinetics of biopolymerization on nucleic acid templates, Biopolymers6(1968), 1–25.
  • [58] J. Neergard and M. den Nijs,Crossover scaling functions in one dimensional dynamic growth crystals, Phys. Rev. Lett.74(5) (1995), 730–733.
  • [59] I. M. Nolden,The asymmetric six-vertex model, J. Statist. Phys.67(1992), 155–201.
  • [60] A. Okounkov and N. Reshetikhin,Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram, J. Amer. Math. Soc.16(2003), 581–603.
  • [61] L. Pauling,The structure and entropy of ice and of other crystals with some randomness of atomic arrangement, J. Am. Chem. Soc.57(1935), 2680–2684.
  • [62] A. M. Povolotsky,On integrability of zero-range chipping models with factorized steady state, J. Phys. A46, no. 46 (2013), art. ID 465205.
  • [63] M. Prähofer and H. Spohn, “Current fluctuations for the totally asymmetric simple exclusion process” inIn and Out of Equilibrium (Mambucaba, 2000), Progr. Probab.51, Birkhäuser, Boston, 2002, 185–204.
  • [64] J. Quastel, “Introduction to KPZ” inCurrent Developments in Mathematics, 2011, Int. Press, Somerville, Mass., 2012, 125–194.
  • [65] J. Quastel and B. Valkó, “A note on the diffusivity of finite-range asymmetric exclusion processes on $\mathbb{Z}$” inIn and Out of Equilibrium, 2, Progr. Probab.60, Birkhäuser, Basel, 2008, 543–549.
  • [66] J. Quastel and B. Valkó,$t^{1/3}$ superdiffusivity of finite-range asymmetric exclusion processes on $\mathbb{Z}$, Comm. Math. Phys.273(2007), 379–394.
  • [67] N. Reshetikhin, “Lectures on the integrability of the six-vertex model” inExact Methods in Low-Dimensional Statistical Physics and Quantum Computing, Oxford Univ. Press, Oxford, 2010, 197–266.
  • [68] N. Reshetikhin and K. Palamarchuk, “The 6-vertex model with fixed boundary conditions” inProceedings of Bethe Ansatz: 75 Years Later, Proc. of Sci., Trieste, 2006, no. 12.
  • [69] N. Reshetikhin and A. Sridhar,Limit shapes of the stochastic six-vertex model, preprint,arXiv:1609.01756v1[math-ph].
  • [70] S. Sheffield,Random Surfaces, Astérisque304, Soc. Math. France, Paris, 2005.
  • [71] J. Shore and D. J. Bukman,Coexistence point in the six-vertex model and the crystal shape of FCC materials, Phys. Rev. Lett.72(5) (1994), 604–607.
  • [72] J. C. Slater,Theory of transition in $\mathrm{KH}_{2}\mathrm{PO}_{4}$, J. Chem. Phys.9(1941), 16–33.
  • [73] F. Spitzer,Interaction of Markov processes, Adv. Math.5(1970), 246–290.
  • [74] H. Spohn,Large Scale Dynamics of Interacting Particles, Springer, Berlin, 1991.
  • [75] B. Sutherland, C. N. Yang, and C. P. Yang,Exact solution of a model of two-dimensional ferroelectrics in an arbitrary external electric field, Phys. Rev. Lett.19(10) (1967), 588–591.
  • [76] C. A. Tracy and H. Widom,A Fredholm determinant representation in ASEP, J. Stat. Phys.132(2008), 291–300.
  • [77] C. A. Tracy and H. Widom,Integral formulas for the asymmetric simple exclusion process, Comm. Math. Phys.279(2008), 815–844.
  • [78] C. A. Tracy and H. Widom,Asymptotics in ASEP with step initial condition, Comm. Math. Phys.290(2009), 129–154.
  • [79] C. A. Tracy and H. Widom,On ASEP with step Bernoulli initial condition, J. Stat. Phys.137(2009), 825–838.
  • [80] C. A. Tracy and H. Widom,Formulas for ASEP with two-sided Bernoulli initial condition, J. Stat. Phys.140(2010), 619–634.
  • [81] H. van Beijern, R. Kutner, and H. Spohn,Excess noise for driven diffusive systems, Phys. Rev. Lett.54(18) (1985), 2026–2029.
  • [82] J. F. van Deijen,On the Plancherel formula for the (discrete) Laplacian in a Weyl chamber with repulsive boundary conditions at the walls, Ann. Henri Poincaré5(2004), 135–168.
  • [83] P. Zinn-Justin,Six-Vertex, Loop and Tiling Models: Integrability and Combinatorics, Lambert Academic, 2010.