Duke Mathematical Journal

The Prym–Green conjecture for torsion line bundles of high order

Gavril Farkas and Michael Kemeny

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


Using a construction of Barth and Verra that realizes torsion bundles on sections of special K3 surfaces, we prove that the minimal resolution of a general paracanonical curve C of odd genus g and order g+22 is natural, thus proving the Prym–Green conjecture. In the process, we confirm the expectation of Barth and Verra concerning the number of curves with -torsion line bundle in a linear system on a special K3 surface.

Article information

Duke Math. J., Volume 166, Number 6 (2017), 1103-1124.

Received: 25 October 2015
Revised: 15 July 2016
First available in Project Euclid: 16 December 2016

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 14H
Secondary: 14H10: Families, moduli (algebraic)

paracanonical curve Koszul cohomology natural resolution Barth–Verra surface


Farkas, Gavril; Kemeny, Michael. The Prym–Green conjecture for torsion line bundles of high order. Duke Math. J. 166 (2017), no. 6, 1103--1124. doi:10.1215/00127094-3792814. https://projecteuclid.org/euclid.dmj/1481879046

Export citation


  • [1] M. Aprodu and G. Farkas, The Green conjecture for smooth curves lying on arbitrary $K3$ surfaces, Compos. Math. 147 (2011), 839–851.
  • [2] W. Barth and A. Verra, “Torsion on $K3$-sections” in Problems in the Theory of Surfaces and Their Classification (Cortona, 1988), Sympos. Math. 32, Academic Press, Boston, 1991, 1–24.
  • [3] A. Chiodo, D. Eisenbud, G. Farkas, and F.-O. Schreyer, Syzygies of torsion bundles and the geometry of the level $\ell$ modular variety over $\overline{\mathcal{M}}_{g}$, Invent. Math. 194 (2013), 73–118.
  • [4] A. Chiodo and G. Farkas, Singularities of the moduli space of level curves, to appear in J. Eur. Math. Soc., preprint, arXiv:1205.0201.
  • [5] I. Dolgachev, Mirror symmetry for lattice polarized $K3$ surfaces, J. Math. Sci. 81 (1996), 2599–2630.
  • [6] G. Farkas and M. Kemeny, The generic Green-Lazarsfeld Secant conjecture, Invent. Math. 203 (2016), 265–301.
  • [7] G. Farkas and K. Ludwig, The Kodaira dimension of the moduli space of Prym varieties, J. Eur. Math. Soc. 12 (2010), 755–795.
  • [8] G. Farkas and A. Verra, Moduli of theta-characteristics via Nikulin surfaces, Math. Ann. 354 (2012), 465–496.
  • [9] M. Green, Koszul cohomology and the cohomology of projective varieties, J. Differential Geom. 19 (1984), 125–171.
  • [10] G. Hardy and E. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Sci., New York, 1979.
  • [11] D. Huybrechts and M. Kemeny, Stable maps and Chow groups, Doc. Math. 18 (2013), 507–517.
  • [12] D. Huybrechts and M. Lehn, The Geometry of the Moduli Space of Sheaves, Cambridge Univ. Press, Cambridge, 2010.
  • [13] R. Lazarsfeld, Brill-Noether-Petri without degenerations, J. Differential Geom. 23 (1986), 299–307.
  • [14] J. Milnor and D. Husemoller, Symmetric Bilinear Forms, Ergeb. Math. Grenzgeb. 73, Springer, New York, 1973.
  • [15] D. Morrison, On $K3$ surfaces with large Picard number, Invent. Math. 75 (1984), 105–121.
  • [16] M. Schütt and T. Shioda, “Elliptic surfaces” in Algebraic Geometry in East Asia (Seoul, 2008), Adv. Stud. Pure Math. 60, Math. Soc. Japan, Tokyo, 2010, 51–160.
  • [17] T. Shioda, “Correspondence of elliptic curves and Mordell-Weil lattices of certain elliptic $K3$ surfaces” in Algebraic Cycles and Motives, Cambridge Univ. Press, Cambridge, 2007, 319–339.
  • [18] The Stacks Project Authors, Stacks Project, http://stacks.math.columbia.edu, 2016.
  • [19] B. van Geemen and A. Sarti, Nikulin involutions on $K3$ surfaces, Math. Zeitschrift 255 (2007), 731–753.
  • [20] C. Voisin, Green’s generic syzygy conjecture for curves of even genus lying on a $K3$ surface, J. Eur. Math. Soc. 4 (2002), 363–404.
  • [21] C. Voisin, Compos. Math. 141 (2005), 1163–1190.