Duke Mathematical Journal

Chern slopes of surfaces of general type in positive characteristic

Giancarlo Urzúa

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Let k be an algebraically closed field of characteristic p>0, and let C be a nonsingular projective curve over k. We prove that for any real number x2, there are minimal surfaces of general type X over k such that (a) c12(X)>0, c2(X)>0, (b) π1e´t(X)π1e´t(C), and (c) c12(X)/c2(X) is arbitrarily close to x. In particular, we show the density of Chern slopes in the pathological Bogomolov–Miyaoka–Yau interval (3,) for any given p. Moreover, we prove that for C=P1 there exist surfaces X as above with H1(X,OX)=0, that is, with Picard scheme equal to a reduced point. In this way, we show that even surfaces with reduced Picard scheme are densely persistent in [2,) for any given p.

Article information

Source
Duke Math. J., Volume 166, Number 5 (2017), 975-1004.

Dates
Received: 23 September 2015
Revised: 2 July 2016
First available in Project Euclid: 15 December 2016

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1481771254

Digital Object Identifier
doi:10.1215/00127094-3792596

Mathematical Reviews number (MathSciNet)
MR3626568

Zentralblatt MATH identifier
06707167

Subjects
Primary: 14J10: Families, moduli, classification: algebraic theory
Secondary: 14C22: Picard groups 14F35: Homotopy theory; fundamental groups [See also 14H30] 14J29: Surfaces of general type

Keywords
surfaces of general type Chern numbers Bogomolov–Miyaoka–Yau inequality étale fundamental group Picard scheme positive characteristic

Citation

Urzúa, Giancarlo. Chern slopes of surfaces of general type in positive characteristic. Duke Math. J. 166 (2017), no. 5, 975--1004. doi:10.1215/00127094-3792596. https://projecteuclid.org/euclid.dmj/1481771254


Export citation

References

  • [1] W. P. Barth, K. Hulek, C. A. M. Peters, and A. Van de Ven, Compact Complex Surfaces, Ergeb. Math. Grenzgeb. (3) 4, Springer, Berlin, 2004.
  • [2] G. Barthel, F. Hirzebruch, and T. Höfer, Geradenkonfigurationen und Algebraische Flächen, Aspects Math. D4, Vieweg, Braunschweig, 1987.
  • [3] I. Bouw, The p-rank of ramified covers of curves, Compos. Math. 126 (2001), 295–322.
  • [4] R. Easton, Surfaces violating Bogomolov-Miyaoka-Yau in positive characteristic, Proc. Amer. Math. Soc. 136 (2008), 2271–2278.
  • [5] H. Esnault and E. Viehweg, Lectures on Vanishing Theorems, DMV Seminar 20, Birkhäuser, Basel, 1992.
  • [6] K. Girstmair, Zones of large and small values for Dedekind sums, Acta Arith. 109 (2003), 299–308.
  • [7] K. Girstmair, Continued fractions and Dedekind sums: Three-term relations and distribution, J. Number Theory 119 (2006), 66–85.
  • [8] A. Grothendieck, Revêtements étales et groupe fondamental, Séminaire de Géométrie Algébrique du Bois Marie 1960–1961 (SGA 1), Lecture Notes in Math. 224, Springer, Berlin, 1971.
  • [9] R. Hartshorne, Algebraic Geometry, Grad. Texts in Math. 52, Springer, New York, 1977.
  • [10] F. Hirzebruch and D. Zagier, The Atiyah-Singer Theorem and Elementary Number Theory, Publish or Perish, Boston, 1974.
  • [11] J. Jang, Generically ordinary fibrations and a counterexample to Parshin’s conjecture, Michigan Math. J. 59 (2010), 169–178.
  • [12] K. Joshi, Crystalline aspects of geography of low dimensional varieties: Numerology, preprint, arXiv:1403.6402v1 [math.AG].
  • [13] J. Kollár, Rational Curves on Algebraic Varieties, Ergeb. Math. Grenzgeb. (3) 32, Springer, Berlin, 1996.
  • [14] J. Kollár and S. Mori, Birational Geometry of Algebraic Varieties, Cambridge Tracts in Math. 134, Cambridge Univ. Press, Cambridge, 1998.
  • [15] A. Langer, Bogomolov’s inequality for Higgs sheaves in positive characteristic, Invent. Math. 199 (2015), 889–920.
  • [16] C. Liedtke, “Algebraic surfaces in positive characteristic” in Birational Geometry, Rational Curves, and Arithmetic, Springer, New York, 2013, 229–292.
  • [17] K. Mitsui, Homotopy exact sequences and orbifolds, Algebra Number Theory 9 (2015), 1089–1136.
  • [18] D. Mumford, Pathologies, III, Amer. J. Math. 89 (1967), 94–104.
  • [19] D. Mumford and T. Oda, Algebraic Geometry, II, preprint, www.dam.brown.edu/people/mumford/alg_geom/papers/AGII.pdf (accessed 9 November 2016).
  • [20] M. Mustaţă, Toric resolution of singularities, lecture notes, 2004, www.math.lsa.umich.edu/~mmustata/toric_var.html.
  • [21] J. P. Murre, Lectures on an Introduction to Grothendieck’s Theory of the Fundamental Group, Tata Inst. Fundam. Res. Stud. Math. 40, Tata Inst. Fundam. Res., Bombay, 1967.
  • [22] M. V. Nori, Zariski’s conjecture and related problems, Ann. Sci. Éc. Norm. Supér. (4) 16 (1983), 305–344.
  • [23] A. N. Parshin, “The Bogomolov-Miyaoka-Yau inequality for the arithmetical surfaces and its applications” in Séminaire de théorie des nombres (Paris, 1986–1987), Progr. Math. 75, Birkhäuser, Boston, 1988, 299–312.
  • [24] A. N. Parshin, “Letter to Don Zagier by A. N. Parshin” in Arithmetic Algebraic Geometry (Texel, 1989), Progr. Math. 89, Birkhäuser, Boston, 1991, 285–292.
  • [25] J. Rana, Boundary divisors in the moduli space of stable quintic surfaces, preprint, arXiv:1407.7148v1 [math.AG].
  • [26] M. Raynaud, Mauvaise réduction des courbes et $p$-rang, C. R. Math. Acad. Sci. Paris 319 (1994), 1279–1282.
  • [27] X. Roulleau and G. Urzúa, Chern slopes of simply connected complex surfaces of general type are dense in [$2,3$], Ann. of Math. (2) 182 (2015), 287–306.
  • [28] J.-P. Serre, “Sur la topologie des variétés algébriques en caractéristique $p$” in Symposium internacional de topología, Universidad Nacional Autónoma de México, Mexico City, 1958, 24–53.
  • [29] J.-P. Serre, “Espaces fibrés algébriques” in Séminaire Bourbaki, Vol. 2, (1951–1954), no. 82, Soc. Math. France, Paris, 1995, 305–311.
  • [30] N. I. Shepherd-Barron, Geography for surfaces of general type in positive characteristic, Invent. Math. 106 (1991), 263–274.
  • [31] T. Szamuely, Galois Groups and Fundamental Groups, Cambridge Stud. Adv. Math. 117, Cambridge Univ. Press, Cambridge, 2009.
  • [32] L. Szpiro, “Sur le théorème de rigidité de Parshin et Arakelov” in Journées de Géométrie Algébrique de Rennes, II (Rennes, 1978), Astérisque 64, Soc. Math. France, Paris, 1979, 169–202.
  • [33] G. Urzúa, Arrangements of curves and algebraic surfaces, Ph.D. dissertation, University of Michigan, Ann Arbor, Mich., 2008, https://deepblue.lib.umich.edu/handle/2027.42/60657.
  • [34] G. Urzúa, Arrangements of curves and algebraic surfaces, J. of Algebraic Geom. 19 (2010), 335–365.
  • [35] G. Urzúa, Arrangements of rational sections over curves and the varieties they define, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 4 (2011), 453–486.
  • [36] G. Xiao, $\pi_{1}$ of elliptic and hyperelliptic surfaces, Internat. J. Math. 2 (1991), 599–615.