Duke Mathematical Journal

Gamma classes and quantum cohomology of Fano manifolds: Gamma conjectures

Sergey Galkin, Vasily Golyshev, and Hiroshi Iritani

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


We propose Gamma conjectures for Fano manifolds which can be thought of as a square root of the index theorem. Studying the exponential asymptotics of solutions to the quantum differential equation, we associate a principal asymptotic class AF to a Fano manifold F. We say that F satisfies Gamma conjecture I if AF equals the Gamma class ΓˆF. When the quantum cohomology of F is semisimple, we say that F satisfies Gamma conjecture II if the columns of the central connection matrix of the quantum cohomology are formed by ΓˆFCh(Ei) for an exceptional collection {Ei} in the derived category of coherent sheaves Dcohb(F). Gamma conjecture II refines a part of a conjecture by Dubrovin. We prove Gamma conjectures for projective spaces and Grassmannians.

Article information

Duke Math. J., Volume 165, Number 11 (2016), 2005-2077.

Received: 18 June 2014
Revised: 6 September 2015
First available in Project Euclid: 21 April 2016

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 53D37: Mirror symmetry, symplectic aspects; homological mirror symmetry; Fukaya category [See also 14J33]
Secondary: 14N35: Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants [See also 53D45] 11G42: Arithmetic mirror symmetry [See also 14J33] 14J45: Fano varieties 14J33: Mirror symmetry [See also 11G42, 53D37]

Fano varieties Grassmannians quantum cohomology Frobenius manifolds mirror symmetry Dubrovin’s conjecture Gamma class Apery limit abelian/nonabelian correspondence quantum Satake principle derived category of coherent sheaves exceptional collection Landau–Ginzburg model


Galkin, Sergey; Golyshev, Vasily; Iritani, Hiroshi. Gamma classes and quantum cohomology of Fano manifolds: Gamma conjectures. Duke Math. J. 165 (2016), no. 11, 2005--2077. doi:10.1215/00127094-3476593. https://projecteuclid.org/euclid.dmj/1461252850

Export citation


  • [1] M. J. Ablowitz and A. S. Fokas, Complex Variables: Introduction and Applications, 2nd ed., Cambridge Texts Appl. Math., Cambridge Univ. Press, Cambridge, 2003.
  • [2] G. Almkvist, D. van Straten, and W. Zudilin, “Apéry limits of differential equations of order 4 and 5” in Modular Forms and String Duality (Banff, 2006), Fields Inst. Commun. 54, Amer. Math. Soc., Providence, 2008, 105–123.
  • [3] M. F. Atiyah, “Circular symmetry and stationary-phase approximation” in Colloquium in honor of Laurent Schwartz, Vol. 1 (Palaiseau, 1983), Astérisque 131, Soc. Math. France, Paris, 1985, 43–59.
  • [4] W. Balser, W. B. Jurkat, and D. A. Lutz, Birkhoff invariants and Stokes’ multipliers for meromorphic linear differential equations, J. Math. Anal. Appl. 71 (1979), 48–94.
  • [5] W. Balser, W. B. Jurkat, and D. A. Lutz, On the reduction of connection problems for differential equations with an irregular singular point to ones with only regular singularities, I, SIAM J. Math. Anal. 12 (1981), 691–721.
  • [6] A. A. Beilinson, Coherent sheaves on $\mathbb{P}^{n}$ and problems in linear algebra (in Russian), Funktsional. Anal. i Prilozhen. 12, no. 3 (1978), 68–69; English translation in Funct. Anal. Appl. 12 (1979), 214–16.
  • [7] A. Bertram, Quantum Schubert calculus, Adv. Math. 128 (1997), 289–305.
  • [8] A. Bertram, I. Ciocan-Fontanine, and B. Kim, Two proofs of a conjecture of Hori and Vafa, Duke Math. J. 126 (2005), 101–136.
  • [9] A. I. Bondal and A. E. Polishchuk, Homological properties of associative algebras: The method of helices (in Russian), Izv. Ross. Akad. Nauk Ser. Mat. 57, no. 2(1993), 3–50; English translation in Russian Acad. Sci. Izv. Math. 42, no. 2 (1994), 219–260.
  • [10] L. E. Borisov and R. P. Horja, Mellin–Barnes integrals as Fourier–Mukai transforms, Adv. Math. 207 (2006), 876–927.
  • [11] T. Bridgeland and V. Toledano-Laredo, Stokes factors and multilogarithms, J. Reine Angew. Math. 682 (2013), 89–128.
  • [12] A. S. Buch, Quantum cohomology of Grassmannians, Compos. Math. 137 (2003), 227–235.
  • [13] P. Candelas, X. C. de la Ossa, P. S. Green, and L. Parkes, An exactly soluble superconformal theory from a mirror pair of Calabi–Yau manifolds, Phys. Lett. B 258 (1991), 118–126.
  • [14] I. Ciocan-Fontanine, B. Kim, and C. Sabbah, The abelian/nonabelian correspondence and Frobenius manifolds, Invent. Math. 171 (2008), 301–343.
  • [15] T. Coates, A. Corti, S. Galkin, V. Golyshev, and A. Kasprzyk, Mirror symmetry and Fano manifolds, preprint, arXiv:1212.1722v1 [math.AG].
  • [16] B. Dubrovin, “Geometry of 2D topological field theories” in Integrable Systems and Quantum Groups (Montecatini Terme, 1993), Lecture Notes in Math. 1620, Springer, Berlin, 1996, 120–348.
  • [17] B. Dubrovin, “Geometry and analytic theory of Frobenius manifolds” in International Congress of Mathematicians, Vol. II (Berlin, 1998), Doc. Math 1998, 315–326.
  • [18] B. Dubrovin, “Painlevé transcendents in two-dimensional topological field theory” in The Painlevé Property, CRM Ser. Math. Phys., Springer, New York, 1999, 287–412.
  • [19] B. Dubrovin, Quantum cohomology and isomonodromic deformation, conference lecture at “Recent progress in the theory of Painlevé equations: Algebraic, asymptotic and topological aspects,” Strasbourg, France, 2013.
  • [20] W. Fulton, Young Tableaux: With Applications to Representation Theory and Geometry, London Math. Soc. Stud. Texts 35, Cambridge Univ. Press, Cambridge, 1997.
  • [21] W. Fulton and C. Woodward, On the quantum product of Schubert classes, J. Algebraic Geom. 13 (2004), 641–661.
  • [22] S. Galkin, On Apéry constants of homogeneous varieties, preprint, www.mi.ras.ru/~galkin/work/zetagrass.pdf (accessed 5 April 2016).
  • [23] S. Galkin, The conifold point, preprint, arXiv:1404.7388v1 [math.AG].
  • [24] S. Galkin and H. Iritani, Gamma conjecture via mirror symmetry, preprint, arXiv:1508.00719v1 [math.AG].
  • [25] V. Ginzburg, Sheaves on a loop group, and Langlands’ duality (in Russian), Funktsional. Anal. i Prilozhen. 24, no. 4 (1990), 76–77; English translation in Funct. Anal. Appl. 24, no. 4 (1990), 326–327.
  • [26] A. B. Givental, “Homological geometry and mirror symmetry” in International Conference of Mathematicians, Vol. 1, 2 (Zürich, 1994), Birkhäuser, Basel, 1995, 472–480.
  • [27] A. B. Givental, “Elliptic Gromov–Witten invariants and the generalized mirror conjecture” in Integrable Systems and Algebraic Geometry (Kobe/Kyoto, 1997), World Sci. Publ., River Edge, N.J., 1998, 107–155.
  • [28] A. B. Givental, “Symplectic geometry of Frobenius structures” in Frobenius Manifolds, Aspects Math. E36, Friedr. Vieweg, Wiesbaden, 2004, 91–112.
  • [29] V. Golyshev, Riemann–Roch variations (in Russian), Izv. Ross. Akad. Nauk Ser. Mat. 65, no. 5 (2001), 3–32; English translation in Izv. Math. 65, no. 5 (2001), 853–881.
  • [30] V. Golyshev, Deresonating a Tate period, preprint, arXiv:0908.1458v1 [math.AG].
  • [31] V. Golyshev and L. Manivel, Quantum cohomology and the Satake isomorphism, preprint, arXiv:1106.3120v1 [math.AG].
  • [32] V. Golyshev and A. Mellit, Gamma structures and Gauss’s contiguity, J. Geom. Phys. 78 (2014), 12–18.
  • [33] A. L. Gorodentsev and S. A. Kuleshov, Helix theory, Mosc. Math. J. 4 (2004), 377–440.
  • [34] D. Guzzetti, Stokes matrices and monodromy of the quantum cohomology of projective spaces, Comm. Math. Phys. 207 (1999), 341–383.
  • [35] J. Halverson, H. Jockers, J. M. Lapan, and D. R. Morrison, Perturbative corrections to Kähler moduli spaces, Comm. Math. Phys. 333 (2015), 1563–1584.
  • [36] C. Hertling and Y. Manin, “Unfoldings of meromorphic connections and a construction of Frobenius manifolds” in Frobenius Manifolds, Aspects Math. E36, Vieweg, Wiesbaden, 2004, 113–144.
  • [37] C. Hertling and C. Sevenheck, Nilpotent orbits of a generalization of Hodge structures, J. Reine Angew. Math. 609 (2007), 23–80.
  • [38] K. Hori and M. Romo, Exact results in two-dimensional $(2,2)$ supersymmetric gauge theory with boundary, preprint, arXiv:1308.2438v1 [hep-th].
  • [39] R. P. Horja, Hypergeometric functions and mirror symmetry in toric varieties, Ph.D. dissertation, Duke University, Durham, N.C., 1999.
  • [40] S. Hosono, “Central charges, symplectic forms, and hypergeometric series in local mirror symmetry” in Mirror Symmetry, V, AMS/IP Stud. Adv. Math. 38, Amer. Math. Soc., Providence, 2006, 405–439.
  • [41] S. Hosono, A. Klemm, S. Theisen, and S.-T. Yau, Mirror symmetry, mirror map and applications to complete intersection Calabi–Yau spaces, Nuclear Phys. B 433 (1995), 501–552.
  • [42] M. Hukuhara, Sur les points singuliers des équations différentielles linéaires, III, Mem. Fac. Sci. Kyushu Imp. Univ. 2 (1941), 125–137.
  • [43] H. Iritani, An integral structure in quantum cohomology and mirror symmetry for toric orbifolds, Adv. Math. 222 (2009), 1016–1079.
  • [44] H. Iritani, Real and integral structures in quantum cohomology, I: Toric orbifolds, preprint, arXiv:0712.2204v3 [math.AG].
  • [45] H. Iritani, $tt^{*}$-geometry in quantum cohomology, preprint, arXiv:0906.1307v1 [math.DG].
  • [46] M. Kapranov, The derived category of coherent sheaves on Grassmann varieties (in Russian), Funktsional. Anal. i Prilozhen. 17, no. 2 (1983), 78–79.
  • [47] M. Kapranov, On the derived categories of coherent sheaves on some homogeneous spaces, Invent. Math. 92 (1988), 479–508.
  • [48] L. Katzarkov, M. Kontsevich, and T. Pantev, “Hodge theoretic aspects of mirror symmetry” in From Hodge Theory to Integrability and TQFT tt∗-geometry, Proc. Sympos. Pure Math. 78, Amer. Math. Soc, Providence, 2008, 87–174.
  • [49] B. Kim and C. Sabbah, Quantum cohomology of the Grassmannian and alternate Thom–Sebastiani, Compos. Math. 144 (2008), 221–246.
  • [50] A. Libgober, Chern classes and the periods of mirrors, Math. Res. Lett. 6 (1999), 141–149.
  • [51] R. Lu, The $\widehat{\Gamma}$-genus and a regularization of an $S^{1}$-equivariant Euler class, J. Phys. A 41 (2008), no. 42, art. ID 425204, 13pp.
  • [52] J. Malmquist, Sur l’étude analytique des solutions d’un système d’équations différentielles dans le voisinage d’un point singulier d’indétermination I, Acta Math. 73 (1940), 87–129; II, Acta Math. 74 (1941), 1–64; III, Acta Math. 74 (1941), 109–128.
  • [53] Y. I. Manin, Frobenius Manifolds, Quantum Cohomology, and Moduli Spaces, Amer. Math. Soc. Colloq. Publ. 47, Amer. Math. Soc., Providence, 1999.
  • [54] C. S. Meijer, On the $G$-function, I, Indag. Math. 8 (1946) 124–134.
  • [55] R. Pandharipande, Rational curves on hypersurfaces (after A. Givental), Astérisque 252 (1998), 307–340, Séminaire Bourbaki 1997/1998, no. 848.
  • [56] C. Sabbah, Isomonodromic Deformations and Frobenius Manifolds: An Introduction, Universitext, Springer, London, 2007.
  • [57] Y. Sibuya, Simplification of a system of linear ordinary differential equations about a singular point, Funkcial. Ekvac. 4 (1962), 29–56.
  • [58] Y. Sibuya, Linear Differential Equations in the Complex Domain: Problems of Analytic Continuation, Transl. Math. Monogr. 82, Amer. Math. Soc., Providence, 1990.
  • [59] S. Tanabé, Invariant of the hypergeometric group associated to the quantum cohomology of the projective space, Bull. Sci. Math. 128 (2004), 811–827.
  • [60] C. Teleman, The structure of 2D semi-simple field theories, Invent. Math. 188 (2012), 525–588.
  • [61] W. J. Trjitzinsky, Analytic theory of linear differential equations, Acta Math. 62 (1933), 167–226.
  • [62] H. L. Turrittin, Convergent solutions of ordinary linear homogeneous differential equations in the neighborhood of an irregular singular point, Acta Math. 93 (1955), 27–66.
  • [63] K. Ueda, Stokes matrices for the quantum cohomologies of Grassmannians, Int. Math. Res. Not. IMRN 2005, no. 34, 2075–2086.
  • [64] C. van Enckevort and D. van Straten, “Monodromy calculations of fourth order equations of Calabi–Yau type” in Mirror Symmetry, V, AMS/IP Stud. Adv. Math. 38, Amer. Math. Soc., Providence, 2006, 539–559.
  • [65] W. Wasow, Asymptotic Expansions for Ordinary Differential Equations, Pure Appl. Math. XIV, Wiley, New York, 1965.
  • [66] M. Yoshida and K. Takano, Local theory of Fuchsian systems, I, Proc. Japan Acad. 51 (1975), 219–223.
  • [67] E. Zaslow, Solitons and helices: The search for a math-physics bridge, Comm. Math. Phys. 175 (1996), 337–375.