Duke Mathematical Journal
- Duke Math. J.
- Volume 165, Number 1 (2016), 1-66.
Lyapunov spectrum of ball quotients with applications to commensurability questions
André Kappes and Martin Möller
Full-text: Access denied (no subscription detected)
We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text
Abstract
We determine the Lyapunov spectrum of ball quotients arising from cyclic coverings. The computations are performed by rewriting the sum of Lyapunov exponents as ratios of intersection numbers and by the analysis of the period map near boundary divisors.
As a corollary, we complete the classification of commensurability classes of all presently known nonarithmetic ball quotients.
Article information
Source
Duke Math. J., Volume 165, Number 1 (2016), 1-66.
Dates
Received: 6 November 2012
Revised: 2 July 2014
First available in Project Euclid: 14 October 2015
Permanent link to this document
https://projecteuclid.org/euclid.dmj/1444828413
Digital Object Identifier
doi:10.1215/00127094-3165969
Mathematical Reviews number (MathSciNet)
MR3450741
Zentralblatt MATH identifier
1334.22010
Subjects
Primary: 22E40: Discrete subgroups of Lie groups [See also 20Hxx, 32Nxx]
Keywords
Lyapunov spectrum nonarithmetric lattices period maps
Citation
Kappes, André; Möller, Martin. Lyapunov spectrum of ball quotients with applications to commensurability questions. Duke Math. J. 165 (2016), no. 1, 1--66. doi:10.1215/00127094-3165969. https://projecteuclid.org/euclid.dmj/1444828413
References
- [1] I. Bouw, The $p$-rank of ramified covers of curves, Compositio Math. 126 (2001), 295–322.Mathematical Reviews (MathSciNet): MR1834740
Zentralblatt MATH: 1056.14036
Digital Object Identifier: doi:10.1023/A:1017513122376 - [2] I. Bouw, Pseudo-elliptic bundles, deformation data and the reduction of Galois covers, Habilitatsschrift, Fakultät Mathematik, Universität Duisburg-Essen, 2005.
- [3] I. Bouw and M. Möller, Teichmüller curves, triangle groups, and Lyapunov exponents, Ann. of Math. (2) 172 (2010), 139–185.Mathematical Reviews (MathSciNet): MR2680418
Digital Object Identifier: doi:10.4007/annals.2010.172.139 - [4] J. Carlson, S. Müller-Stach, and C. Peters, Period Mappings and Period Domains, Cambridge Stud. Adv. Math. 85, Cambridge Univ. Press, Cambridge, 2003.
- [5] E. Cattani, A. Kaplan, and W. Schmid, Degeneration of Hodge structures, Ann. of Math. (2) 123 (1986), 457–535.Mathematical Reviews (MathSciNet): MR840721
Zentralblatt MATH: 0617.14005
Digital Object Identifier: doi:10.2307/1971333 - [6] P. B. Cohen and J. Wolfart, Fonctions hypergéométriques en plusieurs variables et espaces des modules de variétés abéliennes, Ann. Sci. École Norm. Sup. (4) 26 (1993), 665–690.Mathematical Reviews (MathSciNet): MR1251148
- [7] P. Deligne, Équations différentielles à points singuliers réguliers, Lecture Notes in Math. 163, Springer, Berlin, 1970.Mathematical Reviews (MathSciNet): MR417174
- [8] P. Deligne, “Un théorème de finitude pour la monodromie” in Discrete Groups in Geometry and Analysis (New Haven, Conn., 1984), Progr. Math. 67, Birkhäuser, Boston, 1987, 1–19.Mathematical Reviews (MathSciNet): MR900821
Digital Object Identifier: doi:10.1007/978-1-4899-6664-3_1 - [9] P. Deligne and G. D. Mostow, Monodromy of hypergeometric functions and nonlattice integral monodromy, Inst. Hautes Études Sci. Publ. Math. 63 (1986), 5–89.
- [10] P. Deligne and G. D. Mostow, Commensurabilities among Lattices in $\mathrm{PU}(1,n)$, Ann. of Math. Stud. 132, Princeton Univ. Press, Princeton, 1993.
- [11] M. Deraux, J. Parker, and J. Paupert, Census of the complex hyperbolic sporadic triangle groups, Exp. Math. 20 (2011), 467–486.Mathematical Reviews (MathSciNet): MR2859902
Zentralblatt MATH: 1264.22009
Digital Object Identifier: doi:10.1080/10586458.2011.565262
Project Euclid: euclid.em/1323367158 - [12] M. Deraux, J. Parker, and J. Paupert, New non-arithmetic complex hyperbolic lattices, to appear in Invent. Math., preprint, arXiv:1401.0308v4 [math.GT].arXiv: 1401.0308v4
Mathematical Reviews (MathSciNet): MR3461365
Digital Object Identifier: doi:10.1007/s00222-015-0600-1 - [13] A. Eskin, M. Kontsevich, and A. Zorich, Lyapunov spectrum of square-tiled cyclic covers, J. Mod. Dyn. 5 (2011), 319–353.Mathematical Reviews (MathSciNet): MR2820564
Zentralblatt MATH: 1254.32019
Digital Object Identifier: doi:10.3934/jmd.2011.5.71 - [14] A. Eskin, M. Kontsevich, and A.Zorich, Sum of Lyapunov exponents of the Hodge bundle with respect to the Teichmüller geodesic flow, Publ. Math. Inst. Hautes Études Sci. 120 (2014), 207–333.Mathematical Reviews (MathSciNet): MR3270590
Digital Object Identifier: doi:10.1007/s10240-013-0060-3 - [15] H. Esnault and E. Viehweg, Chern classes of Gauss-Manin bundles of weight 1 vanish, $K$-Theory 26 (2002), 287–305.
- [16] G. Forni, Deviation of ergodic averages for area-preserving flows on surfaces of higher genus, Ann. of Math. (2) 155 (2002), 1–103.Mathematical Reviews (MathSciNet): MR1888794
Zentralblatt MATH: 1034.37003
Digital Object Identifier: doi:10.2307/3062150 - [17] G. Forni, C. Matheus, and A. Zorich, Lyapunov spectrum of invariant subbundles of the Hodge bundle, Ergodic Theory Dynam. Syst. 34 (2014), 353–408.Mathematical Reviews (MathSciNet): MR3233697
Zentralblatt MATH: 1290.37002
Digital Object Identifier: doi:10.1017/etds.2012.148 - [18] G. Forni, C. Matheus, and A. Zorich, Zero Lyapunov exponents of the Hodge bundle, Comment. Math. Helv. 89 (2014), 489–535.
- [19] W. Fulton, Intersection Theory, Ergeb. Math. Grenzgeb. (3) 2, Springer, Berlin, 1984.Mathematical Reviews (MathSciNet): MR732620
- [20] W. M. Goldman, Complex Hyperbolic Geometry, Oxford Math. Monogr., Oxford Univ. Press, New York, 1999.
- [21] P. A. Griffiths, Periods of integrals on algebraic manifolds, III: Some global differential-geometric properties of the period mapping, Inst. Hautes Études Sci. Publ. Math. 38 (1970), 125–180.
- [22] J. Grivaux and P. Hubert, Les exposants de Liapounoff du flot de Teichmüller (d’après Eskin-Kontsevich-Zorich), Astérisque 361 (2014), 43–75, Séminaire Bourbaki, 2011/2012, nos. 1059–1065.Mathematical Reviews (MathSciNet): MR3289277
- [23] B. Hassett, Moduli spaces of weighted pointed stable curves, Adv. Math. (2) 173 (2003), 316–352.Mathematical Reviews (MathSciNet): MR1957831
Zentralblatt MATH: 1072.14014
Digital Object Identifier: doi:10.1016/S0001-8708(02)00058-0 - [24] S. Helgason, Geometric Analysis on Symmetric Spaces, Math. Surv. Monogr. 39, Amer. Math. Soc., Providence, 1994.Mathematical Reviews (MathSciNet): MR1280714
- [25] B. Hunt, Higher-dimensional ball quotients and the invariant quintic, Transform. Groups 5 (2000), 121–156.Mathematical Reviews (MathSciNet): MR1762115
Zentralblatt MATH: 1024.14022
Digital Object Identifier: doi:10.1007/BF01236466 - [26] D. Huybrechts, Complex Geometry: An Introduction, Universitext, Springer, Berlin, 2005.
- [27] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. II, Wiley, New York, 1996.
- [28] M. Kontsevich, “Lyapunov exponents and Hodge theory” in The Mathematical Beauty of Physics (Saclay, 1996), Adv. Ser. Math. Phys. 24, World Sci., River Edge, N.J., 1997, 318–332.
- [29] M. Kontsevich and A. Zorich, Lyapunov exponents and Hodge theory, preprint, arXiv:hep-th/9701164v1.
- [30] S. Lang, Algebra, Grad. Texts in Math. 211, Springer, New York, 2002.Mathematical Reviews (MathSciNet): MR1878556
- [31] A. Langer, Logarithmic orbifold Euler numbers of surfaces with applications, Proc. London Math. Soc. (3) 86 (2003), 358–396.Mathematical Reviews (MathSciNet): MR1971155
Zentralblatt MATH: 1052.14037
Digital Object Identifier: doi:10.1112/S0024611502013874 - [32] G. A. Margulis, Discrete Subgroups of Semisimple Lie Groups, Ergeb. Math. Grenzgb. (3) 17, Springer, Berlin, 1991.
- [33] C. T. McMullen, Braid groups and Hodge theory, Math. Ann. 355 (2013), 893–946.Mathematical Reviews (MathSciNet): MR3020148
Zentralblatt MATH: 1290.30050
Digital Object Identifier: doi:10.1007/s00208-012-0804-2 - [34] C. T. McMullen, The Gauss–Bonnet theorem for cone manifolds and volumes of moduli spaces, preprint, 2013, http://www.math.harvard.edu/~ctm/papers/home/text/papers/gb/gb.pdf.
- [35] D. B. McReynolds, Arithmetic lattices in $SU(n,1)$, preprint, 2011, http://www.math.uchicago.edu/~dmcreyn/Papers.html.
- [36] M. Möller, Shimura and Teichmüller curves, J. Mod. Dyn. 5 (2011), 1–32.
- [37] M. Möller, E. Viehweg, and K. Zuo, Stability of Hodge bundles and a numerical characterization of Shimura varieties, J. Differential Geom. 92 (2012), 71–151.Mathematical Reviews (MathSciNet): MR3003876
Zentralblatt MATH: 06130614
Project Euclid: euclid.jdg/1352211224 - [38] G. D. Mostow, On a remarkable class of polyhedra in complex hyperbolic space, Pacific J. Math. 86 (1980), 171–276.Mathematical Reviews (MathSciNet): MR586876
Zentralblatt MATH: 0456.22012
Digital Object Identifier: doi:10.2140/pjm.1980.86.171
Project Euclid: euclid.pjm/1102780622 - [39] G. D. Mostow, Generalized Picard lattices arising from half-integral conditions, Inst. Hautes Études Sci. Publ. Math. 63 (1986), 91–106.
- [40] G. D. Mostow, On discontinuous action of monodromy groups on the complex $n$-ball, J. Amer. Math. Soc. 1 (1988), 555–586.
- [41] J. R. Parker, “Complex hyperbolic lattices” in Discrete Groups and Geometric Structures, Contemp. Math. 501, Amer. Math. Soc., Providence, 2009, 1–42.Mathematical Reviews (MathSciNet): MR2581913
Zentralblatt MATH: 1200.22004
Digital Object Identifier: doi:10.1090/conm/501/09838 - [42] J. Paupert, Unfaithful complex hyperbolic triangle groups, III: Arithmeticity and commensurability, Pacific J. Math. 245 (2010), 359–372.Mathematical Reviews (MathSciNet): MR2608441
Zentralblatt MATH: 1210.20045
Digital Object Identifier: doi:10.2140/pjm.2010.245.359 - [43] C. A. M. Peters and J. H. M. Steenbrink, “Monodromy of variations of Hodge structure” in Monodromy and Differential Equations (Moscow, 2001), Appl. Math. 75 (2003), 183–194.
- [44] H. L. Royden, The Ahlfors-Schwarz lemma in several complex variables, Comment. Math. Helv. 55 (1980), 547–558.Mathematical Reviews (MathSciNet): MR604712
Zentralblatt MATH: 0484.53053
Digital Object Identifier: doi:10.1007/BF02566705 - [45] W. Rudin, Real and Complex Analysis, 3rd ed., McGraw-Hill, New York, 1987.Mathematical Reviews (MathSciNet): MR924157
- [46] D. Ruelle, Ergodic theory of differentiable dynamical systems, Inst. Hautes Études Sci. Publ. Math. 50 (1979), 27–58.
- [47] J. K. Sauter, Jr, Isomorphisms among monodromy groups and applications to lattices in $\mathrm{PU}(1,2)$, Pacific J. Math. 146 (1990), 331–384.Mathematical Reviews (MathSciNet): MR1078386
Zentralblatt MATH: 0759.22013
Digital Object Identifier: doi:10.2140/pjm.1990.146.331
Project Euclid: euclid.pjm/1102645161 - [48] W. Schmid, Variation of Hodge structure: The singularities of the period mapping, Invent. Math. 22 (1973), 211–319.Mathematical Reviews (MathSciNet): MR382272
Zentralblatt MATH: 0278.14003
Digital Object Identifier: doi:10.1007/BF01389674 - [49] H. Shiga, On holomorphic mappings of complex manifolds with ball model, J. Math. Soc. Japan 56 (2004), 1087–1107.Mathematical Reviews (MathSciNet): MR2091418
Zentralblatt MATH: 1066.32022
Digital Object Identifier: doi:10.2969/jmsj/1190905450
Project Euclid: euclid.jmsj/1190905450 - [50] W. P. Thurston, “Shapes of polyhedra and triangulations of the sphere” in The Epstein Birthday Schrift, Geom. Topol. Monogr. 1, Geom. Topol. Publ., Coventry, 1998, 511–549.Mathematical Reviews (MathSciNet): MR1668340
Zentralblatt MATH: 0931.57010
Digital Object Identifier: doi:10.2140/gtm.1998.1.511 - [51] E. Viehweg and K. Zuo, Arakelov inequalities and the uniformization of certain rigid Shimura varieties, J. Differential Geom. 77 (2007), 291–352.Mathematical Reviews (MathSciNet): MR2355786
Zentralblatt MATH: 1133.14010
Project Euclid: euclid.jdg/1191860396 - [52] A. Wright, Schwarz triangle mappings and Teichmüller curves: Abelian square-tiled surfaces, J. Mod. Dyn. 6 (2012), 405–426.
- [53] M. Yoshida, Fuchsian Differential Equations, Aspects Math. E11, Vieweg, Braunschweig, 1987.Mathematical Reviews (MathSciNet): MR986252
- [54] A. Zorich, “Flat surfaces” in Frontiers in Number Theory, Physics and Geometry, Volume 1: On Random Matrices, Zeta Functions and Dynamical Systems, Springer, Berlin, 2006, 439–586.Mathematical Reviews (MathSciNet): MR2261104
Digital Object Identifier: doi:10.1007/978-3-540-31347-2_13

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- On periodic Takahashi manifolds
Mulazzani, Michele, Tsukuba Journal of Mathematics, 2001 - Index theory of the de Rham complex on manifolds with periodic ends
Mrowka, Tomasz, Ruberman, Daniel, and Saveliev, Nikolai, Algebraic & Geometric Topology, 2014 - Replica overlap and covering time for the Wiener sausages among Poissonian obstacles
Fukushima, Ryoki, Journal of Mathematics of Kyoto University, 2008
- On periodic Takahashi manifolds
Mulazzani, Michele, Tsukuba Journal of Mathematics, 2001 - Index theory of the de Rham complex on manifolds with periodic ends
Mrowka, Tomasz, Ruberman, Daniel, and Saveliev, Nikolai, Algebraic & Geometric Topology, 2014 - Replica overlap and covering time for the Wiener sausages among Poissonian obstacles
Fukushima, Ryoki, Journal of Mathematics of Kyoto University, 2008 - The multifractal spectrum of Brownian intersection local times
Klenke, Achim and Mörters, Peter, The Annals of Probability, 2005 - Complete intersection singularities of splice type as universal abelian covers
Neumann, Walter D and Wahl, Jonathan, Geometry & Topology, 2005 - Knot commensurability and the Berge conjecture
Boileau, Michel, Boyer, Steven, Cebanu, Radu, and Walsh, Genevieve S, Geometry & Topology, 2012 - Fixed points and periodic points of semiflows of holomorphic maps
Vesentini, Edoardo, Abstract and Applied Analysis, 2003 - Nonvarying sums of Lyapunov exponents of Abelian differentials in low genus
Chen, Dawei and Möller, Martin, Geometry & Topology, 2012 - Spectra of units for periodic ring spectra and group completion of graded $E_{\infty}$ spaces
Sagave, Steffen, Algebraic & Geometric Topology, 2016 - The equvariant slice filtration: A primer
Hill, Michael A., Homology, Homotopy and Applications, 2012