Duke Mathematical Journal

Discriminants in the Grothendieck ring

Ravi Vakil and Melanie Matchett Wood

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We consider the limiting behavior of discriminants, by which we mean informally the locus in some parameter space of some type of object where the objects have certain singularities. We focus on the space of partially labeled points on a variety X and linear systems on X. These are connected—we use the first to understand the second. We describe their classes in the Grothendieck ring of varieties, as the number of points gets large, or as the line bundle gets very positive. They stabilize in an appropriate sense, and their stabilization is given in terms of motivic zeta values. Motivated by our results, we ask whether the symmetric powers of geometrically irreducible varieties stabilize in the Grothendieck ring (in an appropriate sense). Our results extend parallel results in both arithmetic and topology. We give a number of reasons for considering these questions, and we propose a number of new conjectures, both arithmetic and topological.

Article information

Source
Duke Math. J., Volume 164, Number 6 (2015), 1139-1185.

Dates
First available in Project Euclid: 17 April 2015

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1429282680

Digital Object Identifier
doi:10.1215/00127094-2877184

Mathematical Reviews number (MathSciNet)
MR3336842

Zentralblatt MATH identifier
06443240

Subjects
Primary: 14D06: Fibrations, degenerations

Keywords
Grothendiek ring stabilization discriminant configuration spaces hypersurfaces Motivic zeta functions

Citation

Vakil, Ravi; Wood, Melanie Matchett. Discriminants in the Grothendieck ring. Duke Math. J. 164 (2015), no. 6, 1139--1185. doi:10.1215/00127094-2877184. https://projecteuclid.org/euclid.dmj/1429282680


Export citation

References

  • [1] V. I. Arnold, The cohomology ring of the colored braid group, Math. Notes 5 (1969), 138–140.
  • [2] V. I. Arnold, On some topological invariants of algebraic functions, Trans. Moscow Math. Soc. 21 (1970), 30–52.
  • [3] Y. Baryshnikov, On k-apart configuration spaces, lecture, August 2, 2013, http://www.math.uiuc.edu/~ymb/talks/siag/main.html (accessed 17 December 2014).
  • [4] S. Boissière and M. A. Nieper-Wisskirchen, Generating series in the cohomology of Hilbert schemes of points on surfaces, LMS J. Comput. Math. 10 (2007), 254–270.
  • [5] L. Borisov and A. Libgober, “Elliptic genera of singular varieties, orbifold elliptic genus and chiral de Rham complex” in Mirror Symmetry, IV (Montreal, QC, 2000), AMS/IP Stud. Adv. Math. 33, Amer. Math. Soc., Providence, 2002, 325–342.
  • [6] L. Borisov and A. Libgober, Elliptic genera of singular varieties, Duke Math. J. 116 (2003), 319–351.
  • [7] D. Bourqui, Asymptotic behavior of rational curves, preprint, arXiv:1107.3824v1 [math.AG].
  • [8] S. Cappell, L. Maxim, T. Ohmoto, J. Schürmann, and S. Yokura, Characteristic classes of Hilbert schemes of points via symmetric products, Geom. Topol. 17 (2013), 1165–1198.
  • [9] J. Cheah, The cohomology of smooth nested Hilbert schemes of points, Ph.D. dissertation, University of Chicago, Chicago, 1994.
  • [10] J. Cheah, On the cohomology of Hilbert schemes of points, J. Algebr. Geom. 5 (1996), 479–511.
  • [11] T. Church, Homological stability for configuration spaces of manifolds, Invent. Math. 188 (2012), 465–504.
  • [12] T. Church, Homological stability for configuration spaces of manifolds, preprint, arXiv:1103.2441v1 [math.AG].
  • [13] T. Church, personal communication, 2012.
  • [14] T. Church, J. S. Ellenberg, and B. Farb, Representation stability in cohomology and asymptotics of families of varieties over finite fields, preprint, arXiv:1309.6038v1 [math.GT].
  • [15] F. Cohen, R. Cohen, B. Mann, and J. Milgram, The topology of rational functions, Acta Math. 166 (1991), 163–221.
  • [16] J. Denef and F. Loeser, Germs of arcs on singular algebraic varieties and motivic integration, Invent. Math. 135 (1999), 201–232.
  • [17] J. Denef and F. Loeser, “Geometry on arc spaces of algebraic varieties” in European Congress of Mathematics, Vol. I (Barcelona, 2000), Progr. Math. 201, Birkhäuser, Basel, 2001, 327–348.
  • [18] J. Denef and F. Loeser, “On some rational generating series occurring in arithmetic geometry” in Geometric Aspects of Dwork Theory, Vols. I, II, de Gruyter, Berlin, 2004, 509–526.
  • [19] A. Dold and R. Thom, Quasifaserungen und unendliche symmetrische Produckte, Ann. of Math. (2) 67 (1958), 239–281.
  • [20] T. Ekedahl, The Grothendieck group of algebraic stacks, preprint, arXiv:0903.3143v2 [math.AG].
  • [21] Y. Felix and J.-C. Thomas, Rational Betti numbers of configuration spaces, Topology Appl. 102 (2000), 139–149.
  • [22] L. Göttsche, The Betti numbers of the Hilbert scheme of points on a smooth projective surface, Math. Ann. 286 (1990), 193–207.
  • [23] L. Göttsche, On the motive of the Hilbert scheme of points on a surface, Math. Res. Lett. 8 (2001), 613–627.
  • [24] L. Göttsche and W. Soergel, Perverse sheaves and the cohomology of Hilbert schemes of smooth algebraic surfaces, Math. Ann. 296 (1993), 235–245.
  • [25] S. M. Gusein-Zade, I. Luengo, and A. Melle-Hernández, A power structure over the Grothendieck ring of varieties, Math. Res. Lett. 11 (2004), 49–57.
  • [26] S. M. Gusein-Zade, I. Luengo, and A. Melle-Hernández, Power structure over the Grothendieck ring of varieties and generating series of Hilbert schemes of points, Mich. Math. J. 54 (2006), 353–359.
  • [27] S. M. Gusein-Zade, I. Luengo, and A. Melle-Hernández, On piecewise isomorphism of some varieties, Azerb. J. Math. 1 (2011), no. 2.
  • [28] M. Haiman and A. Woo, Garnir modules, Springer fibers, and Ellingsrud-Strømme cells on the Hilbert scheme of points, preprint, 2012.
  • [29] S. Kallel, “An analog of the May-Milgram model for configurations with multiplicities” in Topology, Geometry and Algebra: Interactions and New Directions (Stanford, Calif., 1999), Contemp. Math. 279, Amer. Math. Soc., Providence, 2001, 135–149.
  • [30] M. Kapranov, The elliptic curve in the S-duality theory and Eisenstein series for Kac-Moody groups, preprint, arXiv:math/0001005v2 [math.AG].
  • [31] S. Kimura and A. Vistoli, Chow rings of infinite symmetric products, Duke Math. J. 85 (1996), 411–430.
  • [32] J. Kollár, Conics in the Grothendieck ring, Adv. Math. 198 (2005), 27–35.
  • [33] M. Kontsevich, String cohomology, Lecture at Orsay, 7December 1995.
  • [34] M. Kool, V. Shende, and R. P. Thomas, A short proof of the Göttsche conjecture, Geom. Topol. 15 (2011), 397–406.
  • [35] A. Kupers and J. Miller, Some stable homology calculations and Occam’s razor for Hodge structures, J. Pure Appl. Algebra 218 (2014), 1219–1223.
  • [36] A. Kupers and J. Miller, Homological stability for topological chiral homology of completions, preprint, arXiv:1311.5203 [math.AT].
  • [37] A. Kupers and J. Miller, Homological stability for complements of closures, preprint, arXiv:1312.6424v1 [math.AT].
  • [38] A. Kupers, J. Miller, and T. Tran, Homological stability for symmetric complements, preprint, arXiv:1410.5497v2 [math.AT].
  • [39] M. Larsen and V. Lunts, Motivic measures and stable birational geometry, Mosc. Math. J. 3 (2003), 85–95, 259.
  • [40] M. Larsen and V. Lunts, Rationality criteria for motivic zeta functions, Compos. Math. 140 (2004), 1537–1560.
  • [41] J. Li and Y. Tzeng, Universal polynomials for singular curves on surfaces, preprint, arXiv:1203.3180v1 [math.AG].
  • [42] D. Litt, Symmetric powers do not stabilize, Proc. Amer. Math. Soc. 142 (2014), 4079–4094.
  • [43] D. Litt, Zeta functions of varieties with no rational points, preprint, arXiv:1405.7380v1 [math.AG].
  • [44] Q. Liu and J. Sebag, The Grothendieck ring of varieties and piecewise isomorphisms, Math. Z. 265 (2010), 321–342.
  • [45] M. Lönne, Fundamental groups of projective discriminant complements, Duke Math. J. 150 (2009), 357–405.
  • [46] E. Looijenga, Motivic measures, Astérisque 276 (2002), 267–297, Séminaire Bourbaki, Vol. 1999/2000.
  • [47] I. G. Macdonald, The Poincaré polynomial of a symmetric product, Proc. Cambridge Philos. Soc. 58 (1962), 563–568.
  • [48] L. Maxim and J. Schürmann, “Hirzebruch invariants of symmetric products” in Topology of Algebraic Varieties and Singularities, Contemp. Math. 538, Amer. Math. Soc., Providence, 2011, 163–177.
  • [49] L. Maxim and J. Schürmann, Twisted genera of symmetric products, Selecta Math. (N.S.) 18 (2012), 283–317.
  • [50] D. McDuff, Configuration spaces of positive and negative particles, Topology 14 (1975), 91–107.
  • [51] B. Moonen, Das Lefschetz-Riemann-Roch-Theorem für singuläre Varietäten, Bonner Mathematische Schriften 106, Universität Bonn Math. Inst., Bonn, 1978.
  • [52] N. Naumann, Algebraic independence in the Grothendieck ring of varieties, Trans. Amer. Math. Soc. 359 (2007), 1653–1683.
  • [53] M. Nieper-Wisskirchen, Characteristic classes of the Hilbert schemes of points on non-compact simply-connected surfaces, JP J. Geom. Topol. 8 (2008), 7–21.
  • [54] T. Ohmoto, Generating functions of orbifold Chern classes, I: Symmetric products, Math. Proc. Cambridge Philos. Soc. 144 (2008), 423–438.
  • [55] B. Poonen, The Grothendieck ring of varieties is not a domain, Math. Res. Lett. 9 (2002), 493–497.
  • [56] B. Poonen, Bertini theorems over finite fields, Ann. of Math. (2) 160 (2004), 1099–1127.
  • [57] O. Randal-Williams, personal communications, 2011, 2012.
  • [58] O. Randal-Williams, Homological stability for unordered configuration spaces, Quart. J. Math. 64 (2013), 303–326.
  • [59] J. V. Rennemo, Universal polynomials for tautological integrals on Hilbert schemes, preprint, arXiv:1205.1851v1 [math.AG].
  • [60] O. Tommasi, Stable cohomology of spaces of non-singular hypersurfaces, Adv. Math. 265 (2014), 428–440.
  • [61] O. Tommasi, Stable cohomology of complements of discriminants, in progress.
  • [62] O. Tommasi, personal communication, August 2013.
  • [63] B. Totaro, Configuration spaces of algebraic varieties, Topology 35 (1996), 1057–1067.
  • [64] T. Tran, Homological stability for coloured configuration spaces and symmetric complements, preprint, arXiv:1312.6327v1 [math.AT].
  • [65] Y. Tzeng, A proof of the Göttsche-Yau-Zaslow formula, J. Diff. Geom. 90 (2012), 439–472.
  • [66] V. A. Vassiliev, “Topology of complements to discriminants and loop spaces” in Theory of Singularities and its Applications, Adv. Soviet Math. 1, Amer. Math. Soc., Providence, 1990, 9–21.
  • [67] V. A. Vassiliev, “Topology of discriminants and their complements” in Proceedings of the International Congress of Mathematicians (Zürich, 1994), Birkhäuser, Basel, 1995, 209–226.
  • [68] K. Yamaguchi, Configuration space models for spaces of maps from a Riemann surface to complex projective space, Publ. Res. Inst. Math. Sci. 39 (2003), 535–543.
  • [69] D. Zagier, Equivariant Pontrjagin Classes and Applications to Orbit Spaces: Applications of the $G$-Signature Theorem to Transformation Groups, Symmetric Products and Number Theory, Lecture Notes Math. 290, Springer, Berlin, 1972.