Duke Mathematical Journal

Density of hyperbolicity for classes of real transcendental entire functions and circle maps

Lasse Rempe-Gillen and Sebastian van Strien

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


We prove density of hyperbolicity in spaces of (i) real transcendental entire functions, bounded on the real line, whose singular set is finite and real and (ii) transcendental functions f:C{0}C{0} that preserve the circle and whose singular set (apart from 0,) is finite and contained in the circle. In particular, we prove density of hyperbolicity in the famous Arnold family of circle maps and its generalizations, and we solve a number of other open problems for these functions, including three conjectures by de Melo, Salomão, and Vargas.

We also prove density of (real) hyperbolicity for certain families as in (i) but without the boundedness condition. Our results apply, in particular, when the functions in question have only finitely many critical points and asymptotic singularities, or when there are no asymptotic values and the degree of critical points is uniformly bounded.

Article information

Duke Math. J., Volume 164, Number 6 (2015), 1079-1137.

First available in Project Euclid: 17 April 2015

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 37F10: Polynomials; rational maps; entire and meromorphic functions [See also 32A10, 32A20, 32H02, 32H04]
Secondary: 37E05: Maps of the interval (piecewise continuous, continuous, smooth) 37E10: Maps of the circle 37F15: Expanding maps; hyperbolicity; structural stability 30D05: Functional equations in the complex domain, iteration and composition of analytic functions [See also 34Mxx, 37Fxx, 39-XX]

dynamical systems low dynamical systems holomorphic dynamics transcendental dynamics density of hyperbolicity


Rempe-Gillen, Lasse; van Strien, Sebastian. Density of hyperbolicity for classes of real transcendental entire functions and circle maps. Duke Math. J. 164 (2015), no. 6, 1079--1137. doi:10.1215/00127094-2885764. https://projecteuclid.org/euclid.dmj/1429282679

Export citation


  • [1] L. V. Ahlfors, Conformal Invariants: Topics in Geometric Function Theory, McGraw-Hill, New York, 1973.
  • [2] L. V. Ahlfors, Lectures on Quasiconformal Mappings, 2nd ed., supplemental chapters by C. J. Earle, I. Kra, M. Shishikura, and J. H. Hubbard, Univ. Lecture Ser. 38, Amer. Math. Soc., Providence, 2006.
  • [3] M. Aspenberg and W. Bergweiler, Entire functions with Julia sets of positive measure, Math. Ann. 352 (2012), 27–54.
  • [4] M. Benedicks and A. Rodrigues, Kneading sequences for double standard maps, Fund. Math. 206 (2009), 61–75.
  • [5] E. Bierstone and P. D. Milman, Semianalytic and subanalytic sets, Publ. Math. Inst. Hautes Études Sci. 67 (1988), 5–42.
  • [6] C. J. Bishop, Constructing entire functions by quasiconformal folding, Acta. Math. 214 (2015), 1–60.
  • [7] C. Bonatti, Survey: Towards a global view of dynamical systems, for the $C^{1}$-topology, Ergodic Theory Dynam. Systems 31 (2011), 959–993.
  • [8] H. Bruin and S. van Strien, On the structure of isentropes of polynomial maps, Dyn. Sys. 28 (2013), 381–392.
  • [9] H. Bruin and S. van Strien, Monotonicity of entropy for real multimodal maps, J. Amer. Math. Soc. 28 (2015), 1–61.
  • [10] X. Buff and A. Chéritat, Upper bound for the size of quadratic Siegel disks, Invent. Math. 156 (2004), 1–24.
  • [11] T. Clark and S. van Strien, Quasi-symmetric rigidity, in preparation.
  • [12] T. Clark, S. van Strien, and S. Trejo, Complex box bounds for real maps, preprint, arXiv:1310.8338v2 [math.DS].
  • [13] W. de Melo, P. A. S. Salomão, and E. Vargas, A full family of multimodal maps on the circle, Ergodic Theory Dynam. Systems 31 (2011), 1325–1344.
  • [14] W. de Melo and S. van Strien, One-dimensional Dynamics, Ergeb. Math. Grenzgeb. (3) 25, Springer, Berlin, 1993.
  • [15] A. Dezotti, Connectedness of the Arnold tongues for double standard maps, Proc. Amer. Math. Soc. 138 (2010), 3569–3583.
  • [16] A. Douady and L. R. Goldberg, “The nonconjugacy of certain exponential functions” in Holomorphic Functions and Moduli, I (Berkeley, 1986), Math. Sci. Res. Inst. Publ. 10, Springer, New York, 1988, 1–7.
  • [17] G. Elfving, Über eine Klasse von Riemannschen Flächen und ihre Uniformisierung, Acta Soc. Sci. Fenn. 2, Helsinki, 1934.
  • [18] A. L. Epstein, Transversality in holomorphic dynamics, in preparation.
  • [19] A. Epstein, L. Keen, and C. Tresser, The set of maps $F_{a,b}\colon x\mapsto x+a+(b/2\pi)\sin(2\pi x)$ with any given rotation interval is contractible, Comm. Math. Phys. 173 (1995), 313–333.
  • [20] A. Epstein and L. Rempe-Gillen, A Newhouse phenomenon in transcendental dynamics, in preparation.
  • [21] A. E. Eremenko and M. Y. Lyubich, Dynamical properties of some classes of entire functions, Ann. Inst. Fourier (Grenoble) 42 (1992), 989–1020.
  • [22] A. A. Goldberg and I. V. Ostrovskii, Value Distribution of Meromorphic Functions, with an appendix by A. Eremenko and J. K. Langley, Transl. Math. Monogr. 236, Amer. Math. Soc., Providence, 2008.
  • [23] J. Graczyk and S. Smirnov, Non-uniform hyperbolicity in complex dynamics, Invent. Math. 175 (2009), 334–415.
  • [24] J. Graczyk and G. Świa̧tek, Generic hyperbolicity in the logistic family, Ann. of Math. (2) 146 (1997), 1–52.
  • [25] P. Haïssinsky, Rigidity and expansion for rational maps, J. Lond. Math. Soc. (2) 63 (2001), 128–140.
  • [26] J. Heinonen and P. Koskela, Definitions of quasiconformality, Invent. Math. 120 (1995), 61–79.
  • [27] M. Hemke, Measurable dynamics of meromorphic maps, Ph.D. dissertation, Christian-Albrechts-Universität zu Kiel, Kiel, Germany, 2005. dissertation:00001420.
  • [28] W. Hurewicz and H. Wallman, Dimension Theory, Princeton Math. Ser. 4, Princeton Univ. Press, Princeton, 1941.
  • [29] O. Kozlovski, W. Shen, and S. van Strien, Density of hyperbolicity in dimension one, Ann. of Math. (2) 166 (2007), 145–182.
  • [30] O. Kozlovski, W. Shen, and S. van Strien, Rigidity for real polynomials, Ann. of Math. (2) 165 (2007), 749–841.
  • [31] O. Kozlovski and S. van Strien, Local connectivity and quasi-conformal rigidity of non-renormalizable polynomials, Proc. Lond. Math. Soc. (3) 99 (2009), 275–296.
  • [32] S. G. Krantz and H. R. Parks, A Primer of Real Analytic Functions, 2nd ed., Birkhäuser, Boston, 2002.
  • [33] B. Krauskopf and H. Kriete, Kernel convergence of hyperbolic components, Ergodic Theory Dynam. Systems 17 (1997), 1137–1146.
  • [34] G. Levin and S. van Strien, Bounds for maps of an interval with one critical point of inflection type, II, Invent. Math. 141 (2000), 399–465.
  • [35] M. Lyubich, Dynamics of quadratic polynomials, I, II, Acta Math. 178 (1997), 185–297.
  • [36] R. S. MacKay and C. Tresser, Transition to topological chaos for circle maps, Phys. D 19 (1986), 206–237.
  • [37] V. Mayer and L. Rempe, Rigidity and absence of line fields for meromorphic and Ahlfors islands maps, Ergodic Theory Dynam. Systems 32 (2012), 1691–1710.
  • [38] C. T. McMullen, Complex Dynamics and Renormalization, Ann. of Math. Stud. 135, Princeton Univ. Press, Princeton, 1994.
  • [39] H. Mihaljević-Brandt, Semiconjugacies, pinched Cantor bouquets and hyperbolic orbifolds, Trans. Amer. Math. Soc. 364, no. 8 (2012), 4053–4083.
  • [40] H. Mihaljević-Brandt and L. Rempe-Gillen, Absence of wandering domains for some real entire functions with bounded singular sets, Math. Ann. 357 (2013), 1577–1604.
  • [41] J. Milnor and C. Tresser, On entropy and monotonicity for real cubic maps, with an appendix by A. Douady and P. Sentenac, Comm. Math. Phys. 209 (2000), 123–178.
  • [42] M. Misiurewicz and A. Rodrigues, On the tip of the tongue, J. Fixed Point Theory Appl. 3 (2008), 131–141.
  • [43] C. Pommerenke, Boundary Behaviour of Conformal Maps, Grundlehren Math. Wiss. 299, Springer, Berlin, 1992.
  • [44] F. Przytycki and S. Rohde, Rigidity of holomorphic Collet-Eckmann repellers, Ark. Mat. 37 (1999), 357–371.
  • [45] E. R. Pujals and M. Sambarino, Homoclinic tangencies and hyperbolicity for surface diffeomorphisms, Ann. of Math. (2) 151 (2000), 961–1023.
  • [46] L. Rempe-Gillen, Rigidity of escaping dynamics for transcendental entire functions, Acta Math. 203 (2009), 235–267.
  • [47] L. Rempe-Gillen and D. Sixsmith, Hyperbolic entire functions and the Eremenko-Lyubich class: Class $\mathcal{B}$ or not class $\mathcal{B}$?, preprint, arXiv:1502.00492v1 [math.CV].
  • [48] L. Rempe-Gillen and S. van Strien, Absence of line fields and Mañé’s theorem for non-recurrent transcendental functions, Trans. Amer. Math. Soc. 363, no. 1 (2011), 203–228.
  • [49] L. Rempe-Gillen and S. van Strien, Dynamics of trigonometric polynomials and maps from the Arnold family, in preparation.
  • [50] P. J. Rippon and G. M. Stallard, Iteration of a class of hyperbolic meromorphic functions, Proc. Amer. Math. Soc. 127 (1999), 3251–3258.
  • [51] G. Rottenfußer, J. Rückert, L. Rempe, and D. Schleicher, Dynamic rays of bounded-type entire functions, Ann. of Math. (2) 173 (2011), 77–125.
  • [52] W. Shen, On the metric properties of multimodal interval maps and $C^{2}$ density of Axiom A, Invent. Math. 156 (2004), 301–403.
  • [53] W. Shen and S. van Strien, Recent developments in interval dynamics, to appear in Proceedings of the International Congress of Mathematicians 2014, preprint.
  • [54] M. Shishikura, On the quasiconformal surgery of rational functions, Ann. Sci. Éc. Norm. Supér. (4) 20 (1987), 1–29.
  • [55] D. Smania, Puzzle geometry and rigidity: The Fibonacci cycle is hyperbolic, J. Amer. Math. Soc. 20 (2007), 629–673.
  • [56] S. van Strien, One-dimensional dynamics in the new millennium, Discrete Contin. Dyn. Syst. 27 (2010), 557–588.
  • [57] S. van Strien, One-parameter families of smooth interval maps: Density of hyperbolicity and robust chaos, Proc. Amer. Math. Soc. 138 (2010), 4443–4446.
  • [58] S. van Strien, “Milnor’s conjecture on monotonicity of topological entropy: Results and questions” in Frontiers in Complex Dynamics, Princeton Univ. Press, Princeton, 2014, 323–334.