Duke Mathematical Journal

Minimal Ahlfors regular conformal dimension of coarse expanding conformal dynamics on the sphere

Peter Haïssinsky and Kevin M. Pilgrim

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Suppose that f:S2S2 determines a dynamical system on the sphere which is topologically coarse expanding conformal in the sense of our previous work. We prove that if its Ahlfors regular conformal dimension Q is realized by some metric d, then either (i) Q=2 and f is topologically conjugate to a semihyperbolic rational map with Julia set equal to the whole sphere or (ii) Q>2 and f is topologically conjugate to a map which lifts to an affine expanding map of a torus whose differential has distinct real eigenvalues. This is an analogue of a known result for Gromov hyperbolic groups with a two-sphere boundary.

Article information

Source
Duke Math. J., Volume 163, Number 13 (2014), 2517-2559.

Dates
First available in Project Euclid: 1 October 2014

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1412168850

Digital Object Identifier
doi:10.1215/00127094-2819408

Mathematical Reviews number (MathSciNet)
MR3265557

Zentralblatt MATH identifier
1384.37056

Subjects
Primary: 37F30: Quasiconformal methods and Teichmüller theory; Fuchsian and Kleinian groups as dynamical systems 54E40: Special maps on metric spaces
Secondary: 20F67: Hyperbolic groups and nonpositively curved groups 30C65: Quasiconformal mappings in $R^n$ , other generalizations

Keywords
conformal dimension modulus of curves word hyperbolic group weak tangent space rational map Lattès maps

Citation

Haïssinsky, Peter; Pilgrim, Kevin M. Minimal Ahlfors regular conformal dimension of coarse expanding conformal dynamics on the sphere. Duke Math. J. 163 (2014), no. 13, 2517--2559. doi:10.1215/00127094-2819408. https://projecteuclid.org/euclid.dmj/1412168850


Export citation

References

  • [BnK1] M. Bonk and B. Kleiner, Rigidity for quasi-Möbius group actions, J. Differential Geom. 61 (2002), 81–106.
  • [BnK2] M. Bonk and B. Kleiner, Conformal dimension and Gromov hyperbolic groups with 2-sphere boundary, Geom. Topol. 9 (2005), 219–246 (electronic).
  • [BM] M. Bonk and D. Meyer, Expanding Thurston maps, preprint, arXiv:1009.3647v1 [math. DS].
  • [BdK] M. Bourdon and B. Kleiner, Combinatorial modulus, Combinatorial Loewner property and Coxeter groups, Groups Geom. Dyn. 7 (2013), 39–107.
  • [BBI] D. Burago, Y. Burago, and S. Ivanov, A Course in Metric Geometry, Grad. Stud. in Math. 33, Amer. Math. Soc., Providence, 2001.
  • [Can] J. W. Cannon. “The theory of negatively curved spaces and groups” in Ergodic Theory, Symbolic Dynamics, and Hyperbolic Spaces (Trieste, 1989), Oxford Univ. Press, New York, 1991, 315–369.
  • [Cla] S. Claytor, Topological immersion of Peanian continua in a spherical surface, Ann. of Math. (2) 35 (1934), 809–835.
  • [DS] G. David and S. Semmes, Fractured Fractals and Broken Dreams, Oxford Lecture Ser. Math. Appl., 7, Clarendon Press Oxford Univ. Press, New York, 1997.
  • [DH] A. Douady and J. Hubbard, A proof of Thurston’s topological characterization of rational functions, Acta. Math. 171 (1993), 263–297.
  • [Haï] P. Haïssinsky, Empilement de cercles et modules combinatoires, Ann. Inst. Fourier 59 (2009), 2175–2222.
  • [HP1] P. Haïssinsky, Thurston obstructions and Ahlfors regular conformal dimension, J. Math. Pures Appl. (9) 90 (2008), 229–241.
  • [HP2] P. Haïssinsky and K. M. Pilgrim, Coarse Expanding Conformal Dynamics, Astérisque 325, Soc. Math. France, Paris, 2009.
  • [HP3] P. Haïssinsky and K. M. Pilgrim, Examples of coarse expanding conformal maps, Discrete Contin. Dyn. Syst. 32 (2012), 2403–2416.
  • [HK] J. Heinonen and P. Koskela, Quasiconformal maps in metric spaces with controlled geometry, Acta Math. 181 (1998), 1–61.
  • [Hei] E. Heintze, On homogeneous manifolds of negative curvature, Math. Ann. 211 (1974), 23–34.
  • [IP] C. Inninger and F. Peherstorfer, A new simple class of rational functions whose Julia set is the whole Riemann sphere, J. London Math. Soc. (2) 65 (2002), 453–463.
  • [KL] S. Keith and T. Laakso, Conformal Assouad dimension and modulus, Geom. Funct. Anal. 14 (2004), 1278–1321.
  • [Kle] B. Kleiner. “The asymptotic geometry of negatively curved spaces: Uniformization, geometrization and rigidity” in International Congress of Mathematicians, Vol. II, Eur. Math. Soc., Zürich, 2006, 743–768.
  • [Kol] B. Kolev, Sous-groupes compacts d’homéomorphismes de la sphère, Enseign. Math. (2) 52 (2006), 193–214.
  • [Mac] J. Mackay, Existence of quasi-arcs, Proc. Amer. Math. Soc. 136 (2008), 3975-3981.
  • [MT] J. Mackay and J. Tyson, Conformal Dimension: Theory and Application, Amer. Math. Soc. Univ. Lecture Ser. 54, Amer. Math. Soc., Providence, 2010.
  • [MgM] G. A. Margulis and G. D. Mostow, The differential of a quasi-conformal mapping of a Carnot–Carathéodory space, Geom. Funct. Anal. 5 (1995), 402–433.
  • [MtM] G. Martin and V. Mayer, Rigidity in holomorphic and quasiregular dynamics, Trans. Amer. Math. Soc. 355, no. 11 (2003), 4349-4363 (electronic).
  • [Mi1] J. Milnor, Dynamics in One Complex Variable, 3rd ed., Ann. of Math. Stud. 160, Princeton Univ. Press, Princeton, 2006.
  • [Mi2] J. Milnor, “On Lattès maps” in Dynamics on the Riemann Sphere, Euro. Math. Soc., 2006.
  • [Pan] P. Pansu, Dimension conforme et sphère à l’infini des variétés à courbure négative, Ann. Acad. Sci. Fenn. Ser. A I Math. 14 (1989), 177–212.
  • [Pau] F. Paulin, Un groupe hyperbolique est déterminé par son bord, J. London Math. Soc. (2) 54 (1996), 50-74.
  • [Tys] J. Tyson, Quasiconformality and quasisymmetry in metric measure spaces, Ann. Acad. Sci. Fenn. Math. 23 (1998), 525–548.
  • [Väi] J. Väisälä, Lectures on $n$-Dimensional Quasiconformal Mappings, Lecture Notes in Math. 229, Springer, Berlin, 1971.
  • [Whi] H. Whitney, Regular families of curves, Ann. of Math. (2) 34 (1933), 244–270.
  • [Why] G. T. Whyburn, Analytic Topology, Amer. Math. Soc. Colloq. Publ., Vol. XXVIII, Amer. Math. Soc., Providence, 1963.
  • [Yin] Q. Yin, Lattès maps and combinatorial expansion, preprint, arXiv:1109.2664v3 [math.DS].