Duke Mathematical Journal

Sphere packing bounds via spherical codes

Henry Cohn and Yufei Zhao

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


The sphere packing problem asks for the greatest density of a packing of congruent balls in Euclidean space. The current best upper bound in all sufficiently high dimensions is due to Kabatiansky and Levenshtein in 1978. We revisit their argument and improve their bound by a constant factor using a simple geometric argument, and we extend the argument to packings in hyperbolic space, for which it gives an exponential improvement over the previously known bounds. Additionally, we show that the Cohn–Elkies linear programming bound is always at least as strong as the Kabatiansky–Levenshtein bound; this result is analogous to Rodemich’s theorem in coding theory. Finally, we develop hyperbolic linear programming bounds and prove the analogue of Rodemich’s theorem there as well.

Article information

Duke Math. J., Volume 163, Number 10 (2014), 1965-2002.

First available in Project Euclid: 8 July 2014

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 05B40: Packing and covering [See also 11H31, 52C15, 52C17]
Secondary: 52C17: Packing and covering in $n$ dimensions [See also 05B40, 11H31] 11H31: Lattice packing and covering [See also 05B40, 52C15, 52C17]


Cohn, Henry; Zhao, Yufei. Sphere packing bounds via spherical codes. Duke Math. J. 163 (2014), no. 10, 1965--2002. doi:10.1215/00127094-2738857. https://projecteuclid.org/euclid.dmj/1404824306

Export citation


  • [1] A. Barg and O. R. Musin, Codes in spherical caps, Adv. Math. Commun. 1 (2007), 131–149.
  • [2] L. A. Bassalygo, New upper bounds for error-correcting codes (in Russian), Problemy Peredachi Informacii 1, no. 4 (1965), 41–44; English translation in Probl. Inf. Transm. 1 (1965), 32–35.
  • [3] S. Bochner, Monotone Funktionen, Stieltjessche Integrale und harmonische Analyse, Math. Ann. 108 (1933), 378–410.
  • [4] L. Bowen, Periodicity and circle packings of the hyperbolic plane, Geom. Dedicata 102 (2003), 213–236.
  • [5] L. Bowen and C. Radin, Densest packing of equal spheres in hyperbolic space, Discrete Comput. Geom. 29 (2003), 23–39.
  • [6] L. Bowen and C. Radin, Optimally dense packings of hyperbolic space, Geom. Dedicata 104 (2004), 37–59.
  • [7] K. Böröczky, Packing of spheres in spaces of constant curvature, Acta Math. Acad. Sci. Hungar. 32 (1978), 243–261.
  • [8] P. Cohen and P. Sarnak, Selberg trace formula, manuscript, 1980, Chapters 6 and 7, http://publications.ias.edu/sarnak/paper/496 and http://publications.ias.edu/sarnak/paper/495.
  • [9] H. Cohn, “Order and disorder in energy minimization” in Proceedings of the International Congress of Mathematicians, Vol. IV, Hindustan Book Agency, New Delhi, 2010, 2416–2443.
  • [10] H. Cohn and N. Elkies, New upper bounds on sphere packings. I, Ann. of Math. (2) 157 (2003), 689–714.
  • [11] H. Cohn and A. Kumar, The densest lattice in twenty-four dimensions, Electron. Res. Announc. Amer. Math. Soc. 10 (2004), 58–67.
  • [12] H. Cohn and A. Kumar, Universally optimal distribution of points on spheres, J. Amer. Math. Soc. 20 (2007), 99–148.
  • [13] H. Cohn and A. Kumar, Optimality and uniqueness of the Leech lattice among lattices, Ann. of Math. (2) 170 (2009), 1003–1050.
  • [14] J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, 3rd ed., Grundlehren Math. Wiss. 290, Springer, New York, 1999.
  • [15] E. B. Davies and N. Mandouvalos, Heat kernel bounds on hyperbolic space and Kleinian groups, Proc. Lond. Math. Soc. (3) 57 (1988), 182–208.
  • [16] P. Delsarte, Bounds for unrestricted codes, by linear programming, Philips Res. Rep. 27 (1972), 272–289.
  • [17] P. Delsarte, “Application and generalization of the MacWilliams transform in coding theory” in Proceedings of the 15th Symposium on Information Theory in the Benelux, Werkgemeenschap voor Informatie- en Communicatietheorie, Delft, 1994, 9–44.
  • [18] P. Delsarte, J. M. Goethals, and J. J. Seidel, Spherical codes and designs, Geom. Dedicata 6 (1977), 363–388.
  • [19] J. Elstrodt, F. Grunewald, and J. Mennicke, Groups Acting on Hyperbolic Space, Springer, Berlin, 1998.
  • [20] L. D. Faddeev, The eigenfunction expansion of the Laplace operator on the fundamental domain of a discrete group on the Lobačevskiĭ plane (in Russian), Tr. Mosk. Mat. Obsc. 17 (1967), 323–350; English translation in Trans. Moscow Math. Soc. 17 (1967), 356–386.
  • [21] H. Groemer, Existenzsätze für Lagerungen im Euklidischen Raum, Math. Z. 81 (1963), 260–278.
  • [22] T. C. Hales, A proof of the Kepler conjecture, Ann. of Math. (2) 162 (2005), 1065–1185.
  • [23] S. Helgason, Geometric Analysis on Symmetric Spaces, 2nd ed., Math. Surveys Monogr. 39, Amer. Math. Soc., Providence, 2008.
  • [24] A. B. Hopkins, F. H. Stillinger, and S. Torquato, Spherical codes, maximal local packing density, and the golden ratio, J. Math. Phys. 51 (2010), no. 043302.
  • [25] R. A. Horn and C. R. Johnson, Matrix Analysis, 2nd ed., Cambridge University Press, Cambridge, 2013.
  • [26] G. A. Kabatiansky [Kabatjanskiĭ] and V. I. Levenshtein [Levenšteĭn], Bounds for packings on a sphere and in space (in Russian), Problemy Peredachi Informacii 14 (1978), 3–25; English translation in Probl. Inf. Transm. 14 (1978), 1–17.
  • [27] M. G. Katz, Systolic Geometry and Topology, with an appendix by J. P. Solomon, Math. Surveys Monogr. 137, Amer. Math. Soc., Providence, 2007.
  • [28] D. de Laat, F. M. de Oliveira Filho, and F. Vallentin, Upper bounds for packings of spheres of several radii, preprint, arXiv:1206.2608 [math.MG].
  • [29] V. I. Levenshtein [Levenšteĭn], Maximal packing density of $n$-dimensional Euclidean space with equal balls, Mat. Zametki 18 (1975), 301–311; English translation in Math. Notes 18 (1975), 765–771.
  • [30] V. I. Levenshtein [Levenšteĭn], On bounds for packings in $n$-dimensional Euclidean space (in Russian), Dokl. Akad. Nauk SSSR 245, no. 6 (1979), 1299–1303; English translation in Soviet Math. Dokl. 20 (1979), 417–421.
  • [31] T. H. Marshall, Asymptotic volume formulae and hyperbolic ball packing, Ann. Acad. Sci. Fenn. Math. 24 (1999), 31–43.
  • [32] R. J. McEliece, E. R. Rodemich, H. Rumsey, Jr., and L. R. Welch, New upper bounds on the rate of a code via the Delsarte-MacWilliams inequalities, IEEE Trans. Inform. Theory 23 (1977), 157–166.
  • [33] L. Nachbin, The Haar Integral, Van Nostrand, Princeton, 1965.
  • [34] C. Radin, Orbits of orbs: sphere packing meets Penrose tilings, Amer. Math. Monthly 111 (2004), 137–149.
  • [35] J. G. Ratcliffe, Foundations of Hyperbolic Manifolds, 2nd ed., Grad. Texts in Math. 149, Springer, New York, 2006.
  • [36] E. R. Rodemich, An inequality in coding theory, Abstr. Papers Presented Amer. Math. Soc. 1 (1980), no. 773-05-39, 15.
  • [37] C. A. Rogers, The packing of equal spheres, Proc. Lond. Math. Soc. (3) 8 (1958), 609–620.
  • [38] W. Rudin, Real and Complex Analysis, 3rd ed., McGraw-Hill, New York, 1987.
  • [39] P. Sarnak, Selberg’s eigenvalue conjecture, Notices Amer. Math. Soc. 42 (1995), 1272–1277.
  • [40] I. J. Schoenberg, Positive definite functions on spheres, Duke Math. J. 9 (1942), 96–108.
  • [41] A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. (N.S.) 20 (1956), 47–87.
  • [42] A. Selberg, “On the estimation of Fourier coefficients of modular forms” in Proc. Sympos. Pure Math., Vol. VIII, Amer. Math. Soc., Providence, 1965, 1–15.
  • [43] R. Takahashi, Sur les représentations unitaires des groupes de Lorentz généralisés, Bull. Soc. Math. France 91 (1963), 289–433.
  • [44] A. Terras, Non-Euclidean harmonic analysis, SIAM Rev. 24 (1982), 159–193.
  • [45] A. Valette, On Godement’s characterisation of amenability, Bull. Austral. Math. Soc. 57 (1998), 153–158.
  • [46] S. Vance, Improved sphere packing lower bounds from Hurwitz lattices, Adv. Math. 227 (2011), 2144–2156.
  • [47] A. Venkatesh, A note on sphere packings in high dimension, Int. Math. Res. Not. IMRN 2013, no. 7, 1628–1642.
  • [48] A. B. Venkov, Expansion in automorphic eigenfunctions of the Laplace-Beltrami operator in classical symmetric spaces of rank one, and the Selberg trace formula (in Russian), Tr. Mat. Inst. Steklov 125 (1973), 6–55, 231; English translation in Proc. Steklov Inst. Math. 125 (1973), 1–48.
  • [49] J. A. Wolf, Harmonic Analysis on Commutative Spaces, Math. Surveys Monogr. 142, Amer. Math. Soc., Providence, 2007.
  • [50] Wolfram Research, Mathematica Version 9.0.1, Champaign, Ill., 2013.
  • [51] C. Zong, Sphere Packings, Universitext, Springer, New York, 1999.