Duke Mathematical Journal

A continuous image of a Radon–Nikodým compact space which is not Radon–Nikodým

Antonio Avilés and Piotr Koszmider

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We construct a continuous image of a Radon–Nikodým compact space which is not Radon–Nikodým compact, solving the problem posed in the 1980s by Isaac Namioka.

Article information

Source
Duke Math. J., Volume 162, Number 12 (2013), 2285-2299.

Dates
First available in Project Euclid: 9 September 2013

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1378729688

Digital Object Identifier
doi:10.1215/00127094-2348447

Mathematical Reviews number (MathSciNet)
MR3102480

Zentralblatt MATH identifier
1285.46013

Subjects
Primary: 46B
Secondary: 54F

Citation

Avilés, Antonio; Koszmider, Piotr. A continuous image of a Radon–Nikodým compact space which is not Radon–Nikodým. Duke Math. J. 162 (2013), no. 12, 2285--2299. doi:10.1215/00127094-2348447. https://projecteuclid.org/euclid.dmj/1378729688


Export citation

References

  • [1] A. V. Arkhangel’skiĭ, Topological Function Spaces, Math. Appl. (Soviet Ser.) 78, Kluwer Academic, Dordrecht, 1992.
  • [2] A. V. Arkhangel’skiĭ, General Topology, II, Encyclopaedia Math. Sci. 50, Springer, Berlin, 1996.
  • [3] A. V. Arhangel’skiĭ, Topological vector spaces, compacta, and unions of subspaces, J. Math. Anal. Appl. 350 (2009), 616–622.
  • [4] A. D. Arvanitakis, Some remarks on Radon-Nikodým compact spaces, Fund. Math. 172 (2002), 41–60.
  • [5] A. D. Arvanitakis and A. Avilés, Some examples of continuous images of Radon-Nikodým compact spaces, Czechoslovak Math. J. 59(134) (2009), 1027–1038.
  • [6] A. Avilés, Radon-Nikodým compact spaces of low weight and Banach spaces, Studia Math 166 (2005), 71–82.
  • [7] A. Avilés, Linearly ordered Radon-Nikodým compact spaces, Topology Appl. 154 (2007), 404–409.
  • [8] A. Avilés and O. F. K. Kalenda, Compactness in Banach space theory—selected problems, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 104 (2010), 337–352.
  • [9] Y. Benyamini, M. E. Rudin, M. Wage, Continuous images of weakly compact subsets of Banach spaces, Pacific J. Math. 70 (1977), 309–324.
  • [10] K. Ciesielski and R. Pol, A weakly Lindelöf function space C(K) without any continuous injection into $c_{0}(\Gamma)$, Bull. Pol. Acad. Sci. Math. 32 (1984), 681–688.
  • [11] W. J. Davis, T. Figiel, W. B. Johnson, and A. Pełczyński, Factoring weakly compact operators. J. Funct. Anal. 17 (1974), 311–327.
  • [12] J. Diestel and J. J. Uhl, Vector Measures, Math. Surveys Monogr. 15, American Mathematical Society, Providence, 1977.
  • [13] M. J. Fabian, Gâteaux Differentiability of Convex Functions and Topology: Weak Asplund spaces, Canad. Math. Soc. Ser. Monogr. Adv. Texts, Wiley-Interscience, Wiley, New York, 1997.
  • [14] M. J. Fabian, “Overclasses of the class of Radon-Nikodým compact spaces” in Methods in Banach Space Theory, London Math. Soc. Lecture Note Ser. 337, Cambridge Univ. Press, Cambridge, 2006, 197–214.
  • [15] M. J. Fabian, M. Heisler, and E. Matoušková, Remarks on continuous images of Radon-Nikodým compacta, Comment. Math. Univ. Carolin. 39 (1998), 59–69.
  • [16] M. J. Fabian, V. Montesinos, and V. Zizler, Weak compactness and $\sigma$-Asplund generated Banach spaces, Studia Math. 181 (2007), 125–152.
  • [17] V. V. Fedorchuk, Bicompacta with noncoinciding dimensionalities (in Russian), Dokl. Akad. Nauk SSSR 182 (1968), 275–277; English translation in Soviet Math. Dokl. 9 (1968), 1148–1150.
  • [18] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 1955 (1955), no. 16.
  • [19] S. P. Gul’ko, Properties of sets that lie in $\Sigma$-products, Sov. Math. Dokl. 18 (1977), 1438–1442.
  • [20] M. Iancu and S. Watson, On continuous images of Radon-Nikodým compact spaces through the metric characterization, Topology Proc. 26 (2001/02), 677–693.
  • [21] J. E. Jayne and C. A. Rogers, Borel selectors for upper semicontinuous set-valued maps, Acta Math. 155 (1985), 41–79.
  • [22] P. Koszmider, Banach spaces of continuous functions with few operators, Math. Ann. 330 (2004), 151–183.
  • [23] P. Koszmider, A survey on Banach spaces $C(K)$ with few operators, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 104 (2010), 309–326.
  • [24] E. Matoušková and C. Stegall, “Compact spaces with a finer metric topology and Banach spaces” in General Topology in Banach Spaces, Nova Sci., Huntington, New York, 2001, 81–101.
  • [25] E. Michael and M. E. Rudin, Another note on Eberlein compacts, Pacific J. Math. 72 (1977), 497–499.
  • [26] I. Namioka, Radon-Nikodým compact spaces and fragmentability, Mathematika 34 (1987), 258–281.
  • [27] I. Namioka, On generalizations of Radon-Nikodým compact spaces, Topology Proc. 26 (2001/02), 741–750.
  • [28] I. Namioka, Fragmentability in Banach spaces: Interaction of topologies, Rev. R. Acad. Cienc. Exactas Fí s. Nat. Ser. A Math. RACSAM 104 (2010), 283–308.
  • [29] I. Namioka and R. R. Phelps, Banach spaces which are Asplund spaces, Duke Math. J. 42 (1975), 735–750.
  • [30] J. Orihuela, W. Schachermayer, and M. Valdivia, Every Radon-Nikodým Corson compact space is Eberlein compact, Studia Math. 98 (1991), 157–174.
  • [31] G. Plebanek, A construction of a Banach space $C(K)$ with few operators, Topology Appl. 143 (2004), 217–239.
  • [32] R. Pol, A function space $C(X)$ which is weakly Lindelöf but not weakly compactly generated, Studia Math. 64 (1979), 279–285.
  • [33] O. I. Reynov, On a class of Hausdorff compacts and GSG Banach spaces, Studia Math. 71 (1981/82), 113–126.
  • [34] H. P. Rosenthal, The heredity problem for weakly compactly generated Banach spaces, Compos. Math. 28 (1974), 83–111.
  • [35] I. Schlackow, Centripetal operators and Koszmider spaces, Topology Appl. 155 (2008), 1227–1236.
  • [36] C. Stegall, The duality between Asplund spaces and spaces with the Radon-Nikodým property, Israel J. Math. 29 (1978), 408–412.
  • [37] C. Stegall, The Radon-Nikodým property in conjugate Banach spaces, II, Trans. Amer. Math. Soc. 264 (1981), no. 2, 507–519.
  • [38] C. Stegall, “Spaces of Lipschitz functions on Banach spaces” in Functional Analysis (Essen, 1991), Lect. Notes Pure Appl. Math. 150, Dekker, New York, 1994, 265–278.
  • [39] S. Watson, “The construction of topological spaces: Planks and resolutions” in Recent Progress in General Topology (Prague, 1991), North-Holland, Amsterdam, 1992, 673–757.