Duke Mathematical Journal

Gabor frames and totally positive functions

Karlheinz Gröchenig and Joachim Stöckler

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


Let g be a totally positive function of finite type, that is, ĝ(ξ)=ν=1M(1+2πiδνξ)1 for δνR, δν0, and M2, and let α,β>0. Then the set {e2πiβltg(tαk):k,lZ} is a frame for L2(R) if and only if αβ<1. This result is a first positive contribution to a conjecture of Daubechies from 1990. Until now, the complete characterization of lattice parameters α, β that generate a frame has been known for only six window functions g. Our main result now yields an uncountable class of window functions. As a by-product of the proof method, we also derive new sampling theorems in shift-invariant spaces and obtain the correct Nyquist rate.

Article information

Duke Math. J., Volume 162, Number 6 (2013), 1003-1031.

First available in Project Euclid: 22 April 2013

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 42C15: General harmonic expansions, frames
Secondary: 42C40: Wavelets and other special systems 94A20: Sampling theory


Gröchenig, Karlheinz; Stöckler, Joachim. Gabor frames and totally positive functions. Duke Math. J. 162 (2013), no. 6, 1003--1031. doi:10.1215/00127094-2141944. https://projecteuclid.org/euclid.dmj/1366639398

Export citation


  • [1] A. Aldroubi and H. G. Feichtinger, Exact iterative reconstruction algorithm for multivariate irregularly sampled functions in spline-like spaces: The ${L}^{p}$-theory, Proc. Amer. Math. Soc. 126 (1998), 2677–2686.
  • [2] A. Aldroubi and K. Gröchenig, Beurling–Landau-type theorems for non-uniform sampling in shift invariant spline spaces, J. Fourier Anal. Appl. 6 (2000), 93–103.
  • [3] A. Aldroubi and K. Gröchenig, Nonuniform sampling and reconstruction in shift-invariant spaces, SIAM Rev. 43 (2001), 585–620.
  • [4] A. Aldroubi, Q. Sun, and W.-S. Tang, Nonuniform average sampling and reconstruction in multiply generated shift-invariant spaces, Constr. Approx. 20 (2004), 173–189.
  • [5] M. J. Baastians, Gabor’s expansion of a signal into Gaussian elementary signals, Proc. IEEE 68 (1980), 538–539.
  • [6] R. Balian, Un principe d’incertitude fort en théorie du signal ou en mécanique quantique, C. R. Acad. Sci. Paris Sér. II Méc. Phys. Chim. Sci. Univers Sci. Terre 292 (1981), 1357–1362.
  • [7] V. Bargmann, P. Butera, L. Girardello, and J. R. Klauder, On the completeness of the coherent states, Rep. Math. Phys. 2 (1971), 221–228.
  • [8] J. J. Benedetto, C. Heil, and D. F. Walnut, Differentiation and the Balian–Low theorem, J. Fourier Anal. Appl. 1 (1995), 355–402.
  • [9] K. Bittner and C. K. Chui, “Gabor frames with arbitrary windows” in Approximation Theory, X (St. Louis, 2001), Innov. Appl. Math., Vanderbilt Univ. Press, Nashville, Tenn., 2002, 41–50.
  • [10] C. Cabrelli, K. Gröchenig, and U. Molter, preprint.
  • [11] O. Christensen, An Introduction to Frames and Riesz Bases, Appl. Numer. Harmon. Anal., Birkhäuser, Boston, 2003.
  • [12] W. Czaja and A. M. Powell, “Recent developments in the Balian–Low theorem” in Harmonic Analysis and Applications, Appl. Numer. Harmon. Anal., Birkhäuser, Boston, 2006, 79–100.
  • [13] I. Daubechies, The wavelet transform, time-frequency localization and signal analysis, IEEE Trans. Inform. Theory 36 (1990), 961–1005.
  • [14] I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Conf. Ser. in Appl. Math. 61, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1992.
  • [15] I. Daubechies and A. Grossmann, Frames in the Bargmann space of entire functions, Comm. Pure Appl. Math. 41 (1988), 151–164.
  • [16] I. Daubechies, A. Grossmann, and Y. Meyer, Painless nonorthogonal expansions, J. Math. Phys. 27 (1986), 1271–1283.
  • [17] V. Del Prete, Estimates, decay properties, and computation of the dual function for Gabor frames, J. Fourier Anal. Appl. 5 (1999), 545–562.
  • [18] H. G. Feichtinger and K. Gröchenig, Gabor frames and time-frequency analysis of distributions, J. Funct. Anal. 146 (1997), 464–495.
  • [19] H. G. Feichtinger and N. Kaiblinger, Varying the time-frequency lattice of Gabor frames, Trans. Amer. Math. Soc. 356 (2004), 2001–2023.
  • [20] D. Gabor, Theory of communication, J. IEE (London) 93 (1946), 429–457.
  • [21] K. Gröchenig, An uncertainty principle related to the Poisson summation formula, Studia Math. 121 (1996), 87–104.
  • [22] K. Gröchenig, Foundations of Time-Frequency Analysis, Birkhäuser, Boston, 2001.
  • [23] K. Gröchenig, Time-frequency analysis of Sjöstrand’s class, Rev. Mat. Iberoam. 22 (2006), 703–724.
  • [24] K. Gröchenig and M. Leinert, Wiener’s lemma for twisted convolution and Gabor frames, J. Amer. Math. Soc. 17 (2004), 1–18.
  • [25] K. Gröchenig and Y. Lyubarskii, Gabor (super)frames with Hermite functions, Math. Ann. 345 (2009), 267–286.
  • [26] C. Heil, History and evolution of the density theorem for Gabor frames, J. Fourier Anal. Appl. 13 (2007), 113–166.
  • [27] C. Heil, “Integral operators, pseudodifferential operators, and Gabor frames” in Advances in Gabor Analysis, Appl. Numer. Harmon. Anal., Birkhäuser, Boston, 2003, 153–169.
  • [28] A. J. E. M. Janssen, Gabor representation of generalized functions, J. Math. Anal. Appl. 83 (1981), 377–394.
  • [29] A. J. E. M. Janssen, Bargmann transform, Zak transform, and coherent states, J. Math. Phys. 23 (1982), 720–731.
  • [30] A. J. E. M. Janssen, Signal analytic proofs of two basic results on lattice expansions, Appl. Comput. Harmon. Anal. 1 (1994), 350–354.
  • [31] A. J. E. M. Janssen, Some counterexamples in the theory of Weyl–Heisenberg frames, IEEE Trans. Inform. Theory 42 (1996), 621–623.
  • [32] A. J. E. M. Janssen, Some Weyl–Heisenberg frame bound calculations, Indag. Math. (N.S.) 7 (1996), 165–183.
  • [33] A. J. E. M. Janssen, On generating tight Gabor frames at critical density, J. Fourier Anal. Appl. 9 (2003), 175–214.
  • [34] A. J. E. M. Janssen, “Zak transforms with few zeros and the tie” in Advances in Gabor Analysis, Appl. Numer. Harmon. Anal., Birkhäuser, Boston, 2003, 31–70.
  • [35] A. J. E. M. Janssen and T. Strohmer, Hyperbolic secants yield Gabor frames, Appl. Comput. Harmon. Anal. 12 (2002), 259–267.
  • [36] S. Karlin, Total Positivity, Vol. I, Stanford Univ. Press, Stanford, Calif., 1968.
  • [37] H. J. Landau, Necessary density conditions for sampling and interpolation of certain entire functions, Acta Math. 117 (1967), 37–52.
  • [38] F. Low, “Complete sets of wave packets” in A Passion for Physics—Essay in Honor of Geoffrey Chew, World Scientific, Singapore, 1985, 17–22.
  • [39] F. Luef, Projective modules over noncommutative tori are multi-window Gabor frames for modulation spaces, J. Funct. Anal. 257 (2009), 1921–1946.
  • [40] Y. I. Lyubarskii, “Frames in the Bargmann space of entire functions” in Entire and Subharmonic Functions, Adv. Soviet Math. 11, Amer. Math. Soc., Providence, 1992, 167–180.
  • [41] J. V. Neumann, Mathematische Grundlagen der Quantenmechanik, Springer, Berlin, 1932; English translation: “Mathematical foundations of quantum mechanics,” Princeton Univ. Press, 1955.
  • [42] A. M. Perelomov, Remark on the completeness of the coherent state system (in Russian), Teoret. Mat. Fiz. 6 (1971), 213–224; English translation in Theoret. and Math. Phys. 6 (1971), 156–164.
  • [43] M. A. Rieffel, Projective modules over higher-dimensional noncommutative tori, Canad. J. Math. 40 (1988), 257–338.
  • [44] A. Ron and Z. Shen, Weyl–Heisenberg frames and Riesz bases in ${L}_{2}({\mathbb{R}}^{d})$, Duke Math. J. 89 (1997), 237–282.
  • [45] I. J. Schoenberg, On totally positive functions, Laplace integrals and entire functions of the Laguerre-Pólya-Schur type, Proc. Natl. Acad. Sci. USA 33 (1947), 11–17.
  • [46] I. J. Schoenberg, On Pólya frequency functions, I: The totally positive functions and their Laplace transforms, J. Anal. Math. 1 (1951), 331–374.
  • [47] I. J. Schoenberg and A. Whitney, On Pólya frequence functions, III: The positivity of translation determinants with an application to the interpolation problem by spline curves, Trans. Amer. Math. Soc. 74 (1953), 246-259.
  • [48] L. L. Schumaker, Spline Functions: Basic Theory, John Wiley, New York, 1981.
  • [49] K. Seip, Density theorems for sampling and interpolation in the Bargmann–Fock space, I, J. Reine Angew. Math. 429 (1992), 91–106.
  • [50] T. Strohmer, Approximation of dual Gabor frames, window decay, and wireless communications, Appl. Comput. Harmon. Anal. 11 (2001), 243–262.
  • [51] D. F. Walnut, Continuity properties of the Gabor frame operator, J. Math. Anal. Appl. 165 (1992), 479–504.
  • [52] J. Xian and S. Li, Sampling set conditions in weighted multiply generated shift-invariant spaces and their applications, Appl. Comput. Harmon. Anal. 23 (2007), 171–180.
  • [53] A. Zeira and B. Friedlander, “Gabor representation and signal detection” in Gabor Analysis and Algorithms: Theory and Applications, Appl. Numer. Harmon. Anal., Birkhäuser, Boston, 1998, 353–380.
  • [54] A. Zygmund, Trigonometric Series, Vols. I, II, 3rd ed., Cambridge Univ. Press, Cambridge, 2002.